Assessment of the relationship between the level of somatotropin in hair and meat qualities of Hereford bulls
- 作者: Zavyalov O.A.1, Frolov A.N.1, Sleptsov I.I.1
-
隶属关系:
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
- 期: 卷 17, 编号 2 (2025)
- 页面: 30-59
- 栏目: Human and Animal Physiology
- ##submission.datePublished##: 30.04.2025
- URL: https://bakhtiniada.ru/2658-6649/article/view/310399
- DOI: https://doi.org/10.12731/2658-6649-2025-17-2-1157
- EDN: https://elibrary.ru/UEOKFS
- ID: 310399
如何引用文章
全文:
详细
Background. The issue of using hair as an indicator of long-term changes in somatotropin metabolism in the body of young bulls has not been sufficiently addressed. Moreover, there is almost no information on the relationship between the somatotropin level in hair and the meat qualities of young bulls, which determined the relevance of this study.
Objective is to study the effect of the somatotropin exchange pool, estimated by its concentration in hair on the meat qualities of the Hereford bulls.
Materials and methods. The studies were performed on the Hereford bulls. Animals were divided into three groups depending on the somatotropin level in hair: I - (53.4-57.1 pg / mg); II - (57.3 to 61.8 pg / mg); III - (62.1 to 67.1 pg / mg).
Results. Bulls with the maximum somatotropin level had the highest rates of weight gain. Animals of this group had higher slaughter weight and meat protein content, with a lower fat content. An increase in the somatotropin concentration in hair was accompanied by an increase in the concentrations of leucine + isoleucine, tryptophan, histidine, methionine, a decrease in phenylalanine and serine, as well as an increase in the concentrations of polyunsaturated fatty acids in the longissimus dorsi muscle. The longissimus muscle of bulls with the maximum somatotropin level in hair contained more calcium, copper, zinc and iodine, with relatively low lead concentrations.
Conclusion. The level of somatotropin concentration in hair from the withers is closely related to the intensity of weight growth, meat productivity and meat quality of Hereford bulls, which allows us to consider hair as a biosubstrate for assessing long-term changes in the level of somatotropin in the body, when developing measures aimed at increasing the meat productivity of bulls.
作者简介
Oleg Zavyalov
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: oleg-zavyalov83@mail.ru
Doctor of Biological Sciences, Leading Researcher, Department of Beef Cattle Breeding and Beef Production Technology
俄罗斯联邦, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
Alexey Frolov
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Email: forleh@mail.ru
Doctor of Biological Sciences, Head of the Department of Beef Cattle Breeding and Beef Production Technology
俄罗斯联邦, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
Ivan Sleptsov
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Email: saas2005@mail.ru
Candidate of Economic Sciences, Researcher, Department of Beef Cattle Breeding and Beef Production Technology
俄罗斯联邦, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
参考
- Kalashnikov, A. P., Fisinin, V. I., Shcheglov, V. V., & Pervov, N. G. (2003). Norms and rations for feeding farm animals. Moscow: Znanie. 456 p. ISBN: 5-94587-093-5 EDN: https://elibrary.ru/PXQMHL
- Kononenko, S. I., Kharlamov, A. V., Zavyalov, O. A., & Kharlamov, V. A. (2009). Productivity of bulls born in different seasons of the year. Proceedings of the Kuban State Agrarian University, 19, 197-203. EDN: https://elibrary.ru/KVLOCL
- Kharlamov, A. V., Zavyalov, O. A., Frolov, A. N., Kurilkina, M. Ya., & Korolev, V. L. (2017). Efficiency of beef production under different technologies of rearing and fattening. Bulletin of Meat Cattle Breeding, (2), 93-99. EDN: https://elibrary.ru/YTOCPP
- Anh, N. T. L., Kunhareang, S., & Duangjinda, M. (2015). Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers. Asian-Australas J Anim Sci, 28, 1686-1695. https://doi.org/10.5713/ajas.15.0028
- Asimov, G. J., & Krouze, N. K. (1937). The lactogenic preparations from the anterior pituitary and the increase of milk yield in cows. J Dairy Sci, 20, 289-306.
- Aytac, A. K., Bilal, A. K., & Davut, B. (2015). Determination of the alui polymorphism effect of bovine growth hormone gene on carcass traits in Zavot cattle with analysis of covariance. Turk J Vet Anim Sci, 39, 16-22.
- Baier, F., Grandin, T., Engle, T., & Edwards-Callaway, L. (2019). Evaluation of Hair Characteristics and Animal Age on the Impact of Hair Cortisol Concentration in Feedlot Steers. Front Vet Sci, 6, 323. https://doi.org/10.3389/fvets.2019.00323
- Berryman, D. E., & List, E. O. (2017). Growth Hormone’s effect on adipose tissue: quality versus quantity. Int J Mol Sci, 8, 1621.
- Braun, U., Michel, N., Baumgartner, M. R., Hässig, M., & Binz, T. M. (2017). Cortisol concentration of regrown hair and hair from a previously unshorn area in dairy cows. Res Vet Sci, 114, 412-415. https://doi.org/10.1016/j.rvsc.2017.07.005
- Bristow, D. J., & Holmes, D. S. (2007). Cortisol levels and anxiety-related behaviors in cattle. Phys Behav, 90, 626-638. https://doi.org/10.1016/j.physbeh.2006.11.015
- Brown-Borg, H. M. (2009). Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol, 299, 64-71. https://doi.org/10.1016/j.mce.2008.07.001
- Burnard, C., Ralph, C., Hynd, P., Hocking Edwards, J., & Tilbrook, A. (2017). Hair cortisol and its potential value as a physiological measure of stress response in human and non-human animals. Anim Prod Sci, 57, 401-414. https://doi.org/10.1071/AN15622
- Burnett, T. A., Madureira, A. M., Silper, B. F., Tahmasbi, A., Nadalin, A., Veira, D. M., & Cerri, R. L. (2015). Relationship of concentrations of cortisol in hair with health, biomarkers in blood, and reproductive status in dairy cows. J Dairy Sci, 98(7), 4414-4426. https://doi.org/10.3168/jds.2014-8871
- Bush, J. A., Wu, G., Suryawan, A., Nguyen, H. V., & Davis, T. A. (2002). Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity. The Journal of Nutrition, 132(1), 59-67. https://doi.org/10.1093/jn/132.1.59
- Cantalapiedra-Hijar, G., Abo-Ismail, M., Carstens, G. E., Guan, L. L., Hegarty, R., Kenny, D. A., McGee, M., Plastow, G., Relling, A., & Ortigues-Marty, I. (2018). Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal, 12(s2), 321-335. https://doi.org/10.1017/S1751731118001489
- Carrell, R. C., Smith, W. B., Kinman, L. A., Mercadante, V. R. G., Dias, N. W., & Roper, D. A. (2021). Cattle stress and pregnancy responses when imposing different restraint methods for conducting fixed time artificial insemination. Anim Reprod Sci, 225, 106672. https://doi.org/10.1016/j.anireprosci.2020.106672 EDN: https://elibrary.ru/FSFANM
- Comin, A., Prandi, A., Peric, T., Corazzin, M., Dovier, S., & Bovolenta, S. (2011). Hair cortisol levels in dairy cows from winter housing to summer highland grazing. Livest Sci, 138, 69-73. https://doi.org/10.1016/j.livsci.2010.12.009
- Dehkhoda, F., Lee, C. M. M., Medina, J., & Brooks, A. J. (2018). The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front Endocrinol (Lausanne), 9, 35. https://doi.org/10.3389/fendo.2018.00035
- Devesa, J., Almengló, C., & Devesa, P. (2016). Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes, 9, 47-71. https://doi.org/10.4137/CMED.S38201
- Dumbell, R. (2022). An appetite for growth: The role of the hypothalamic-pituitary-growth hormone axis in energy balance. J Neuroendocrinol, 34(6), e13133. https://doi.org/10.1111/jne.13133 EDN: https://elibrary.ru/UVOOVW
- Flores, J., García, J. E., Mellado, J., Gaytán, L., de Santiago, Á., & Mellado, M. (2019). Effect of growth hormone on milk yield and reproductive performance of subfertile Holstein cows during extended lactations. Spanish J. Agric. Res, 17(11), e0403. https://doi.org/10.5424/sjar/2019171-13842 EDN: https://elibrary.ru/REWXBZ
- Florini, J. R., Ewton, D. Z., & Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev, 17, 481-517. https://doi.org/10.1210/edrv-17-5-481
- Furigo, I. C., Teixeira, P. D. S., & de Souza, G. O. (2019). Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nat Commun, 1, 662. https://doi.org/10.1038/s41467-019-08607-1 EDN: https://elibrary.ru/HMFRHT
- Ghassemi Nejad, J., Lee, B. H., Kim, J. Y., Chemere, B., Sung, K. I., & Lee, H. G. (2021). Effect of alpine grazing on plasma and hair cortisol, serotonin, and DHEA in dairy cows and its welfare impact. Domest Anim Endocrinol, 75, 106581. https://doi.org/10.1016/j.domaniend.2020.106581 EDN: https://elibrary.ru/NFZMZK
- Gómez, C. A., Fernández, M., Franco, N., & Cueva, R. (2022). Effect of two formulations of recombinant bovine somatotropin on milk production and body condition of cattle under intensive management in Peru. Trop Anim Health Prod, 54(2), 96. https://doi.org/10.1007/s11250-021-03036-z EDN: https://elibrary.ru/MZNKYE
- Gow, R., et al. (2010). An assessment of cortisol analysis in hair and its clinical applications. Forensic science international, 196(1-3), 32-37. https://doi.org/10.1016/j.forsciint.2009.12.040
- Heimbürge, S., Kanitz, E., Tuchscherer, A., & Otten, W. (2020). Within a hair’s breadth — Factors influencing hair cortisol levels in pigs and cattle. Gen Comp Endocrinol, 1(288), 113359. https://doi.org/10.1016/j.ygcen.2019.113359
- Holzer, Z., Aharoni, Y., Brosh, A., Orlov, A., Veenhuizen, J., & Kasser, T. R. (1999). The effects of long-term administration of recombinant bovine somatotropin (Posilac) and Synovex on performance, plasma hormone and amino acid concentration, and muscle and subcutaneous fat fatty acid composition in Holstein-Friesian bull calves. Journal of Animal Science, 77(6), 1422-1430. https://doi.org/10.2527/1999.7761422x
- Jia, J., Ahmed, I., Liu, L., Liu, Y., Xu, Z., Duan, X., Li, Q., Dou, T., Gu, D., Rong, H., Wang, K., Li, Z., Talpur, M. Z., Huang, Y., & Wang, S., et al. (2018). Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS One, 13(4), e0195378. https://doi.org/10.1371/journal.pone.0195378
- Kalashnikov, V., Zajcev, A., Atroshchenko, M., Kalinkova, L., Kalashnikova, T., Miroshnikov, S., Frolov, A., & Zav’yalov, O. (2018). The content of essential and toxic elements in the hair of the mane of the trotter horses depending on their speed. Environmental Science and Pollution Research, 25(22), 21961-21967. https://doi.org/10.1007/s11356-018-2334-2 EDN: https://elibrary.ru/YBUALJ
- Levakhin, V. I., Gorlov, I. F., Azhmuldinov, E. A., Levakhin, Yu. I., Duskaev, G. K., Zlobina, E. Yu., & Karpenko, E. V. (2017). Change in physiological parameters of calves of various breeds under the transport and preslaughter stress. Nusantara Bioscience, 9(1), 1-5. https://doi.org/10.13057/nusbiosci/n090101 EDN: https://elibrary.ru/ZVTZPJ
- Meyer, J., Novak, M., Hamel, A., & Rosenberg, K. (2014). Extraction and analysis of cortisol from human and monkey hair. J Vis Exp, 24(83), e50882. https://doi.org/10.3791/50882
- Miroshnikov, S., Kharlamov, A., Zavyalov, O., Frolov, A., Duskaev, G., Bolodurina, I., & Arapova, O. (2015). Method of sampling beef cattle hair for assessment of elemental profile. Pakistan Journal of Nutrition, 14(9), 632-636. https://doi.org/10.3923/pjn.2015.632.636 EDN: https://elibrary.ru/UZXNBR
- Miroshnikov, S., Zavyalov, O., Frolov, A., Bolodurina, I., Skalny, A., Kalashnikov, V., Grabeklis, A., & Tinkov, A. (2017). The Reference Intervals of Hair Trace Element Content in Hereford Cows and Heifers (Bos Taurus). Biological trace element Research, 180(1), 456-462. https://doi.org/10.1007/s12011-017-0991-5 EDN: https://elibrary.ru/XNCEKI
- Miroshnikov, S. A., Zavyalov, O. A., Frolov, A. N., Skalny, A. V., & Grabeklis, A. R. (2020). The reference values of hair content of trace elements in dairy cows of holstein breed. Biological Trace Element Research, 194(1), 145-151. https://doi.org/10.1007/s12011-019-01768-6 EDN: https://elibrary.ru/PILFQC
- Peric, T., Comin, A., Corazzin, M., Montillo, M., Cappa, A., Campanile, G., & Prandi, A. (2013). Short communication: hair cortisol concentrations in Holstein-Friesian and crossbreed F1 heifers. J Dairy Sci, 96(5), 3023-3027. https://doi.org/10.3168/jds.2012-6151 EDN: https://elibrary.ru/YDIAGD
- Rezaei, R., Wu, Z., Hou, Y., Bazer, F. W., & Wu, G. (2016). Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol, 2(7), 20. https://doi.org/10.1186/s40104-016-0078-8 EDN: https://elibrary.ru/YDFGZI
- Russell, E., Koren, G., Rieder, M., & Van Uum, S. (2012). Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology, 37, 589-601. https://doi.org/10.1016/j.psyneuen.2011.09.009
- Skoupá, K., Šťastný, K., & Sládek, Z. (2022). Anabolic Steroids in Fattening Food-Producing Animals-A Review. Animals (Basel), 18(16), 2115. https://doi.org/10.3390/ani12162115 EDN: https://elibrary.ru/XBKHGY
- Steyn, F. J., Xie, T. Y., Huang, L., Ngo, S. T., Veldhuis, J. D., Waters, M. J., & Chen, C. (2013). Increased adiposity and insulin correlates with the progressive suppression of pulsatile gh secretion during weight gain. J Endocrinol, 218(2), 233-244. https://doi.org/10.1530/JOE-13-0084
- Tallo-Parra, O., Carbajal, A., Monclús, L., Manteca, X., & Lopez-Bejar, M. (2018). Hair cortisol and progesterone detection in dairy cattle: interrelation with physiological status and milk production. Domest Anim Endocrinol, 64, 1-8. https://doi.org/10.1016/j.domaniend.2018.02.001
- Tallo-Parra, O., Manteca, X., Sabes-Alsina, M., Carbajal, A., & Lopez-Bejar, M. (2015). Hair cortisol detection in dairy cattle by using EIA: protocol validation and correlation with faecal cortisol metabolites. Animal, 9(6), 1059-1064. PMID: 25997530. https://doi.org/10.1017/S1751731115000294
- Vann, R. V., Nguyen, H. V., Reeds, P. J., Burrin, D. G., Fiorotto, M. L., Steele, N. C., Deaver, D. R., & Davis, T. A. (2000). Somatotropin increases protein balance by lowering body protein degradation in fed, growing pigs. Am. J. Physiol, 278, E477-E483. https://doi.org/10.1152/ajpendo.2000.278.3.E477
- Zavyalov, O. A., Frolov, A. N., Medetov, E. S., Aldyyarov, T. B., & Sycheva, I. N. (2024). Effect of the level of somatotropin hormone in blood serum on the meat productivity of Aberdeen angus bulls. BIO Web of Conferences, 121, 02009. https://doi.org/10.1051/bioconf/202412102009 EDN: https://elibrary.ru/IVUBIA
补充文件
