The influence of different processing methods on the phytochemical composition of leaves and cones of common hop (Humulus lupulus L.)

Cover Page

Cite item

Full Text

Abstract

Background. It has been established for a long time that medicinal plants contain a large number of active compounds that are used to treat many diseases. For the first time, a comparative study of the leaves and cones of common hops was conducted for the accumulation of phytochemical compositions. Commercial preparations of growth biostimulants (gibbersib, epin-extra) and bio-fertilizer (pudret) were selected. It was established that hops grown in the conditions of Tatarstan have a rich phytochemical composition and a high content of bioactive substances. can be recommended as a resource that will allow the pharmacological industry to use the highest quality raw materials.

Purpose. Conduct a comparative analysis of the phytochemical composition in the leaves and cones of common hop (Humulus lupulus L.) under different processing methods.

Materials and methods. Planting of rhizomatous hop cuttings was carried out at the beginning of May 2023 in protected soil under laboratory conditions. According to the experimental design, rhizome cuttings were planted in pots with soil to which pudret was added (bio-fertilizer from bird droppings dried in microwave rays, consisting of 88.4% organic matter, 4.59% nitrogen, 1.80% potassium, 3.70% phosphorus) at the rate of 10 g/kg of soil, in the second variant, rhizomatous hop cuttings were treated with gibbersib (666.6 μg/l) by spraying, and in the third variant they were treated with epin-extra (500 μl/l) also by spraying.

After 4 weeks, all variants and also the control were transplanted into open ground (soil acidity was 6.9, organic matter content (humus) 1.96%, nitrate nitrogen content 35.5 mg/kg, ammonia nitrogen 11.3 mg/kg, available phosphorus 584 mg/kg, the amount of exchangeable calcium was 13.25 mmol/100 g and exchangeable magnesium 1.5 mmol/100 g).

Samples for analysis (leaves and cones) were taken 12 weeks after planting in open ground (average night temperature was +140С).

The phytochemical composition in the leaves and buds was determined by spectrophotometric methods described in a study by Al Hussain et al (2023).

The experiments were carried out in six biological replicates. Statistical processing of the data was carried out using Excel 2016. The significance of the difference was determined using the Mann-Whitney test with р ≤ 0.05.

Results. Epin-extra increased the content of flavonoids, tannins and vitamin B2 to a greater extent, gibbersib increased the content of phenolic compounds, carotenoids, sugars and proteins, and powder increased the content of vitamin C, carotenoids, vitamin B2 and proteins.

Conclusion. Our research shows that hop extracts have a wider potential for use in medicine and food technology than just fermentation, and this is due to the possibility of improving the content of useful primary and secondary substances using synthetic growth regulators and bio-fertilizers. A large number of hop leaves remain an unused agricultural by-product, but our research has proven the possibility of using hop leaves as a source of primary and secondary metabolites in medicine (as a sedative, antimicrobial, diuretic, anti-inflammatory agent in the treatment of gastritis, cystitis, urethritis, kidney diseases, liver and gall bladder) and food industry (brewing industry, bakery production).

About the authors

Al Hussein Dalal

Kazan Federal University; Al-Furat University

Author for correspondence.
Email: dalal.matar91@gmail.com

PhD Student, Department of Botany, Plant Physiology and Biochemistry Institute of Fundamental Medicine and Biology; Assistant, Faculty of Agriculture

 

Russian Federation, 18, Kremlyovskaya Str., Kazan, Republic of Tatarstan, 420008, Russian Federation; Deir -ez-Zor, Syrian Arab Republic

Esraa Almugrabi

Kazan Federal University

Email: esraaalmgrabe@gmail.com

Senior Instructor, Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology

 

Russian Federation, 18, Kremlyovskaya Str., Kazan, Republic of Tatarstan, 420008, Russian Federation

Antonina A. Mostyakova

Kazan Federal University

Email: runga540@mail.ru

Associate Professor, Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology

 

Russian Federation, 18, Kremlyovskaya Str., Kazan, Republic of Tatarstan, 420008, Russian Federation

Olga A. Timofeeva

Kazan Federal University

Email: otimofeeva2008@mail.ru

Dr. of Biological Sciences, Professor, Head of the Department of Botany, Plant Physiology and Biochemistry, Institute of Fundamental Medicine and Biology

 

Russian Federation, 18, Kremlyovskaya Str., Kazan, Republic of Tatarstan, 420008, Russian Federation

References

  1. Almugraby, E. (2021). Phytochemical composition and antioxidant status of Brassica oleraceae L. under the action of natural and synthetic plant growth regulators (Doctoral dissertation). Kazan, 170 p.
  2. Kireeva, T. B., & Kitova, E. A. (2006). Ecological ontogenetic features of tannin accumulation in the grass of common oregano under the conditions of Udmurtia. Biology, (10), 85-96.
  3. Malankina, E. L. Medicinal use of hops. Retrieved from https://www.greeninfo.ru/lianes/humulus_lupulus.html/Article/_/aID/5359
  4. Sazhina, N. N., & Misin, V. M. (2011). Measurement of total phenolic compounds content in different parts of medicinal plants. Chemistry of Plant Raw Materials, (3), 149-152. EDN: https://elibrary.ru/OHSURD
  5. Shafikova, S. F. (2013). Pharmacognostic study of common hop leaves (Humulus lupulus L.) (Doctoral dissertation). Samara, 181 p. EDN: https://elibrary.ru/YGMBGB
  6. Astray, G. & Gullón, P. & Gullón, B. & Munekata, P. E. & Lorenzo, J. M. (2020). Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci., 10, 5074. https://doi.org/10.3390/app10155074 EDN: https://elibrary.ru/HVXHXH
  7. Colville, L. & Smirnoff, N. (2008). Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. Journal of Experimental Botany, 59(14), 3857-3868. https://www.jstor.org/stable/24037641
  8. Carbone, K. & Gervasi, F. (2022). An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. Plants, (11), 3434. https://doi.org/10.3390/plants11243434 EDN: https://elibrary.ru/UHHOVD
  9. Dedei, A. J. (2021). Assessment of mineral nutrient impact on metabolites accumulation in kale (Brassica oleracea var. sabellica). Siberian Journal of Life Sciences and Agriculture, 13(3), 208-224. https://doi.org/10.12731/2658-6649-2021-13-3-208-224 EDN: https://elibrary.ru/GFXXKY
  10. Faivre, C. & Ghedira, K. & Goetz, P. et al. (2007). Humulus lupulus L. Phytothérapie, 5(2), 86-89. https://doi.org/10.1007/s10298-007-0217-7
  11. Farag, M. A. & Porzel, A. & Schmidt, J. et al. (2011). Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics, 8(3), 492-507. https://doi.org/10.1007/s11306-011-0335-y EDN: https://elibrary.ru/IDBQZY
  12. Finkelstein, R. R. & Gampala, S. S. L. & Rock, C. (2002). Abscisic Acid Signalling in Seeds and Seedlings. The Plant Cell, 18, 15-45. https://doi.org/10.1105/tpc.010441
  13. Gao, H. & Zhang, Z. & Lv, X. & Cheng, N. & Peng, B. & Cao, W. (2016). Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Postharvest Biology and Technology, 111, 390-397.
  14. Kopsell, D. A. & Lefsrud, M. G. & Kopsell, D. E. & Curran Celentano, J. (2005). Air temperature affects biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. Hortscience, 40(7), 2026-2030. https://doi.org/10.21273/HORTSCI.40.7.2026 EDN: https://elibrary.ru/MFRVSL
  15. Bocquet, L. & Sahpaz, S. & Hilbert, J. L. & Rambaud, C. (2018). Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem Rev, (17), 1047-1090. https://doi.org/10.1007/s11101-018-9584-y EDN: https://elibrary.ru/KKXZIB
  16. Lyu, J. I. & Ryu, J. & Seo, K. S. & Kang, K. Y. & Park, S. H. & Ha, T. H. & Ahn, J. W. & Kang, S. Y. (2022). Comparative Study on Phenolic Compounds and Antioxidant Activities of Hop (Humulus lupulus L.) Strobile Extracts. Plants, (11), 135. https://doi.org/10.3390/plants11010135 EDN: https://elibrary.ru/CWQHXA
  17. Maša, K. & Eva, Š. & Iztok, J. K. & Željko, K. & Urban, B. (2019). Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients, (11), 257. https://doi.org/10.3390/nu11020257
  18. Muzykiewicz, A. & Nowak, A. & Zielonka-Brzezicka, J. & Florkowska, K. & Duchnik, W. & Klimowicz, A. (2019). Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol, 65, 1-9. https://doi.org/10.2478/hepo-2019-0013
  19. Mozafar, A. (2008). Nitrogen fertilizers and the amount of vitamins in plants. Plant Nutrition, 16(12), 2479-2506. https://doi.org/10.1080/01904169309364698
  20. Nionelli, L. & Pontonio, E. & Gobbetti, M. & Rizzello, C. G. (2018). Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int. J. Food Microbiol, 266, 173-172. https://doi.org/10.1016/j.ijfoodmicro.2017.12.002
  21. Okafor, V. N. & Anyalebechi, R. I. & Okafor, U. W. & Okonkwo, C. P. & Obiefuna, J. N. et al. (2020). Phytochemical Constituents of Extracts of Hops and Some Potential Nigerian Hop Substitutes: A Comparative Study in Beer Brewing. Int J Biol Chem Res, 11(1), 1-7. https://www.researchgate.net/publication/350005833
  22. Al Hussein, D. & Almugrabi, E. & Mostyakova, A. & Timofeeva, A. (2023). Phytochemical composition of Humulus Lupulus L. in ontogeny under different treatments. E3S Web of Conferences, 381, 01022. https://doi.org/10.1051/e3sconf/202338101022 EDN: https://elibrary.ru/KDHRXU
  23. Quifer-Rada, P. & Vallverdú-Queralt, A. & Martínez-Huélamo, M. & Chiva-Blanch, G. & Jáuregui, O. & Estruch, R. & Lamuela-Raventós, R. (2015). A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem, 169, 336-343. https://doi.org/10.1016/j.foodchem.2014.07.154
  24. Rodolfi, M. & Barbanti, L. & Giordano, C. & Rinaldi, M. & Fabbri, A. & Pretti, L. & Casolari, R. & Beghé, D. & Petruccelli, R. & Ganino, T. (2021). The Effect of Different Organic Foliar Fertilization on Physiological and Chemical Characters in Hop (Humulus lupulus L., cv Cascade) Leaves and Cones. Appl. Sci., (11), 6778. https://doi.org/10.3390/app11156778 EDN: https://elibrary.ru/NIVHWI
  25. Stanius, Ž. & Dūdenas, M. & Kaškonienė, V. & Stankevičius, M. M. & Skrzydlewska, E. & Drevinskas, T. & Ragažinskienė, O. & Obelevičius, K. & Maruška, A. (2022). Analysis of the Leaves and Cones of Lithuanian Hops (Humulus lupulus L.) Varieties by Chromatographic and Spectrophotometric Methods. Molecules, 27, 2705. https://doi.org/10.3390/molecules27092705 EDN: https://elibrary.ru/CMGBSD
  26. Schmidt, S. & Zietz, M. & Schreiner, M. & Rohn, S. & Kroh, L. & Krumbein, A. (2010). Genotypic and climatic influences on the concentration and composition of flavonoids in Kale (Brassica oleracea var. sabellica). Food Chemistry, 119, 1293-1299. https://doi.org/10.1021/jf9033909 EDN: https://elibrary.ru/NAZVGT
  27. Wei, S. & Sun, T. & Du, J. & Zhang, B. & Xiang, D. & Li, W. (2018). Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncol. Rep., 40, 3213-3222. https://doi.org/10.3892/or.2018.6723
  28. Shui, Y. C. & Feng, X. & Yan, W. (2009). Advances in the study of flavonoids in Gingko biloba leaves. Medicinal Plant Research, 3, 1248-1252. http://www.academicjournals.org/JMPR
  29. Scheible, W. & Morcuende, R. & Czechowski, T. & Fritz, C. & Osuna, D. & Palacios-Rojas, N. & Schindelasch, D. & Thimm, O. & Udvardi, M. K. & Stitt, M. (2004). Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology, 136, 2483-2499. https://doi.org/10.1104/pp.104.047019
  30. Taylor, A. W. & Barofsky, E. & Kennedy, J. A. & Deinzer, M. L. (2003). Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J. Agric Food Chem, 51, 4101-4110. https://doi.org/10.1021/jf0340409
  31. Tanaka, Y. & Yanagida, A. & Komeya, S. et al. (2014). Comprehensive separation and structural analyses of polyphenols and related compounds from bracts of hops (Humulus lupulus L.). J Agric Food Chem, 62(10), 2198-2206. https://doi.org/10.1021/jf405544n EDN: https://elibrary.ru/SSVWBJ
  32. Treutter, D. (2010). Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding-Visions and Constraints. International Journal of Molecular Sciences, (11), 807-857. https://doi.org/10.3390/ijms11030807 EDN: https://elibrary.ru/MZMCTJ
  33. Abrama, V. & Cehb, B. & Vidmara, M. & Hercezia, M. & Lazića, N. & Bucika, V. & Možinaa, S. S. & Koširb, I. J. & Lea Demšara, M. K. & Ulriha, N. P. (2015). A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Industrial Crops and Products, 64, 124-134.
  34. Wang, M. & Zheng, Q. & Shen, Q. & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370-7390. https://doi.org/10.3390/ijms14047370
  35. Zanoli, P. & Zavatti, M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol., 116, 383-396. https://doi.org/10.1016/j.jep.2008.01.011 EDN: https://elibrary.ru/PRUNSW

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».