🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Well-posedness of the microwave heating problem

Capa

Citar

Texto integral

Resumo

A number of initial boundary-value problems of classical mathematical physics is generally represented in the linear operator equation and its well-posedness and causality in a Hilbert space setting was established. If a problem has a unique solution and the solution continuously depends on given data, then the problem is called well-posed. The independence of the future behavior of a solution until a certain time indicates the causality of the solution. In this article, we established the well-posedness and causality of the solution of the evolutionary problems with a perturbation, which is defined by a quadratic form. As an example, we considered the coupled system of the heat and Maxwell’s equations (the microwave heating problem).

Sobre autores

Baljinnyam Tsangia

Mongolian University of Science and Technology

Autor responsável pela correspondência
Email: Baljinnyam.Tsangia@must.edu.mn
ORCID ID: 0000-0002-3331-2516

Dr.rer.nat, Lecturer of Department of Mathematics, School of Applied Sciences, Mongolian University of Science and Technology

Ulaanbaatar, Mongolia

Bibliografia

  1. Hill, J. M. & Marchant, T. R. Modelling microwave heating. Appl. Math. Model. 20, 3-15 (1996).
  2. Yin, H. M. Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 200, 137-161 (2004).
  3. Yin, H. M. Existence and regularity of a weak solution to Maxwell’s equations with a thermal effect. Math. Methods Appl. Sci. 29, 1199-1213 (2006).
  4. Picard, R. A structural observation for linear material laws in classical mathematical physics. Math. Methods Appl. Sci. 32, 1768-1803 (2009).
  5. Picard, R. & McGhee, D. Partial Differential Equations: A unified Hilbert Space Approach 469 pp. (Berlin/New-York, 2011).
  6. Weidmann, J. Linear Operators in Hilbert Spaces 402 pp. (Springer-Verlag, New-York, 1980).
  7. Tsangia, B. Evolutionary problems: Applications to Thermoelectricity PhD thesis (TU Dresden, 2014).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML