Фибробласты как объект изучения пролиферативной активности in vitro
- Авторы: Кузьмичева В.И.1, Волова Л.Т.1, Гильмиярова Ф.Н.1, Быков И.М.2, Авдеева Е.В.1, Колотьева Н.А.1
-
Учреждения:
- ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
- ФГБОУ ВО «Кубанский государственный медицинский университет»
- Выпуск: Том 5, № 3 (2020)
- Страницы: 210-215
- Раздел: Цитология
- URL: https://bakhtiniada.ru/2500-1388/article/view/47379
- DOI: https://doi.org/10.35693/2500-1388-2020-5-3-210-215
- ID: 47379
Цитировать
Полный текст
Аннотация
В настоящем обзоре рассмотрено анатомическое и функциональное разнообразие фибробластов, особенности протекания метаболических процессов и энергетического обмена в этих клетках.
Обсуждается изменение пролиферативной активности фибробластов в зависимости от воздействия различных факторов. Описано влияние малатдегидрогеназной челночной системы на активность метаболических процессов фибробластов, показано, что увеличение жизни клеточной культуры ассоциировано с цитозольной изоформой данного фермента.
Продемонстрирована устойчивость клеточной линии фибробластов при активации свободно-радикальных процессов и перекисного окисления в условиях добавления биологически активных соединений, обсуждается роль отдельных метаболитов в обеспечении свободно-радикальной защиты и поддержании пролиферативного потенциала клеток.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Валерия И.Игоревна Кузьмичева
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
Автор, ответственный за переписку.
Email: bio-sam@yandex.ru
ORCID iD: 0000-0002-5232-1549
ассистент кафедры фундаментальной и клинической биохимии с лабораторной диагностикой
Россия, СамараЛ. Т. Волова
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
Email: bio-sam@yandex.ru
ORCID iD: 0000-0002-8510-3118
д.м.н., профессор, зав. Биотехнологическим отделом ИЭМБ и директор НПЦ «Самарский банк тканей»
Россия, СамараФ. Н. Гильмиярова
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
Email: bio-sam@yandex.ru
ORCID iD: 0000-0001-5992-3609
д.м.н., профессор кафедры фундаментальной и клинической биохимии с лабораторной диагностикой
Россия, СамараИ. М. Быков
ФГБОУ ВО «Кубанский государственный медицинский университет»
Email: bio-sam@yandex.ru
ORCID iD: 0000-0002-1787-0040
д.м.н., профессор, заведующий кафедрой фундаментальной и клинической биохимии
Россия, КраснодарЕ. В. Авдеева
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
Email: bio-sam@yandex.ru
ORCID iD: 0000-0003-3425-7157
д.фарм.н., профессор кафедры фармакогнозии с ботаникой и основами фитотерапии
Россия, СамараН. А. Колотьева
ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава РФ
Email: bio-sam@yandex.ru
ORCID iD: 0000-0002-7853-6222
к.м.н., доцент кафедры фундаментальной и клинической биохимии с лабораторной диагностикой
Россия, СамараСписок литературы
- Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature Reviews Cancer. 2006;6(5):392-401. doi: 10.1038/nrc1877
- Parsonage G, Filer AD, Haworth O, et al. A stromal address code defined by fibroblasts. Trends in Immunology. 2005;26(3):150-156. doi: 10.1016/j.it.2004.11.014
- Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends in Cell Biology. 2015;25(2):92-99. doi: 10.1016/j.tcb.2014.10.001
- Camelliti P, Borg T, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research. 2005;65(1):40-51. doi: 10.1016/j.cardiores.2004.08.020
- Ramos C, Montaño M, Garcı́a-Alvarez Jorge, et al. Fibroblasts from Idiopathic Pulmonary Fibrosis and Normal Lungs Differ in Growth Rate, Apoptosis, and Tissue Inhibitor of Metalloproteinases Expression. American Journal of Respiratory Cell and Molecular Biology. 2001;24(5):591-598. doi: 10.1165/ajrcmb.24.5.4333
- Pascal RR, Kaye GI, Lane MN. Colonic Pericryptal Fibroblast Sheath: Replication, Migration, and Cytodifferentiation of a Mesenchymal Cell System in Adult Tissue. Gastroenterology. 1968;54(5):835-851. doi: 10.1016/s0016-5085(68)80155-6
- Kühl U, Öcalan M, Timpl R, et al. Role of muscle fibroblasts in the deposition of type-IV collagen in the basal lamina of myotubes. Differentiation. 1984;28(2):164-172. doi: 10.1111/j.1432-0436.1984.tb00279.x
- Castor CW, Prince RK, Dorstewitz EL. Characteristics of human “fibroblasts” cultivated in vitro from different anatomical sites. Laboratory Investigation. 1962;11:703-713.
- Rinn JL, Bondre C, Gladstone HB, et al. Anatomic Demarcation by Positional Variation in Fibroblast Gene Expression Programs. PLoS Genetics. 2006;2(7). doi: 10.1371/journal.pgen.0020119
- Rinn JL, Wang JK, Allen N, et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes & Development. 2008;22(3):303-307. doi: 10.1101/gad.1610508
- Houzelstein D, Chéraud Y, Auda-Boucher G, et al. The expression of the homeobox gene Msx1 reveals two populations of dermal progenitor cells originating from the somites. Development. 2000;127(10):2155-2164.
- Bayat A, Arscott G, Ollier W, et al. Description of site-specific morphology of keloid phenotypes in an Afrocaribbean population. British Journal of Plastic Surgery. 2004;57(2):122-133. doi: 10.1016/j.bjps.2003.11.009
- Wong VW, Rustad KC, Akaishi S, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine. 2011;18(1):148-152. doi: 10.1038/nm.2574
- Paquet-Fifield S, Schlüter H, Li A, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. Journal of Clinical Investigation. March 2009. doi: 10.1172/jci38535
- Dulauroy S, Carlo SED, Langa F, et al. Lineage tracing and genetic ablation of ADAM12 perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature Medicine. 2012;18(8):1262-1270. doi: 10.1038/nm.2848
- Rodemann HP, Muller GA, Knecht A, et al. Fibroblasts of rabbit kidney in culture. I. Characterization and identification of cell-specific markers. American Journal of Physiology-Renal Physiology.1991;261(2). doi: 10.1152/ajprenal.1991.261.2.f283
- Werner S, Krieg T, Smola H. Keratinocyte–Fibroblast Interactions in Wound Healing. Journal of Investigative Dermatology. 2007;127(5):998-1008. doi: 10.1038/sj.jid.5700786
- Kessler D, Dethlefsen S, Haase I, et al. Fibroblasts in Mechanically Stressed Collagen Lattices Assume a “Synthetic” Phenotype. Journal of Biological Chemistry. 2001;276(39):36575-36585. doi: 10.1074/jbc.m101602200
- Donati G, Proserpio V, Lichtenberger BM, et al. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proceedings of the National Academy of Sciences. 2014;111(15). doi: 10.1073/pnas.1312880111
- Mastrogiannaki M, Lichtenberger BM, Reimer A, et al. β-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the Reticular Dermis. Journal of Investigative Dermatology. 2016;136(6):1130-1142. doi: 10.1016/j.jid.2016.01.036
- Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nature Communications. 2012;3(1). doi: 10.1038/ncomms1734
- He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology. 2009;20(4):765-776. doi: 10.1681/asn.2008060566
- Chilosi M, Poletti V, Zamò A, et al. Aberrant Wnt/β-Catenin Pathway Activation in Idiopathic Pulmonary Fibrosis. The American Journal of Pathology. 2003;162(5):1495-1502. doi: 10.1016/s0002-9440(10)64282-4
- Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology. 2013;15(6):637-646. doi: 10.1038/ncb2756
- El-Domyati M, Attia S, Saleh F, et al. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Experimental Dermatology. 2002;11(5):398-405. doi: 10.1034/j.1600-0625.2002.110502.x
- Mine S, Fortunel NO, Pageon H, Asselineau D. Aging Alters Functionally Human Dermal Papillary Fibroblasts but Not Reticular Fibroblasts: A New View of Skin Morphogenesis and Aging. PLoS ONE. 2008;3(12). doi: 10.1371/journal.pone.0004066
- Rognoni E, Gomez C, Pisco AO, et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development. 2016;143(14):2522-2535. doi: 10.1242/dev.131797
- Mckay ND, Robinson B, Brodie R, Rooke-Allen N. Glucose transport and metabolism in cultured human skin fibroblasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1983;762(2):198-204. doi: 10.1016/0167-4889(83)90071-x
- Diamond I, Legg A, Schneider JA, Rozengurt E. Glycolysis in quiescent cultures of 3T3 cells. Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization. Journal of biological chemistry. 1978;253(3):866-871.
- Schneider JA, Diamond I, Rozengurt E. Glycolysis of quiescent cultures of 3T3 cells. Addition of serum, epidermal growth factor, and insulin increases the activity of phosphofructokinase in a protein synthesis-independent manner. Journal of biological chemistry. 1978;253(3):872-877.
- Antoshechkin A, Tatur V, Perevezentseva O, Maximova L. Determination of human fibroblasts metabolism in vitro by gas chromatography-mass spectrometry of cell-excreted metabolites. Analytical Biochemistry. 1988;169(1):33-40. doi: 10.1016/0003-2697(88)90253-9
- Yu BP. Why calorie restriction would work for human longevity. Biogerontology. 2006;7(3):179-182. doi: 10.1007/s10522-006-9009-y
- Zwerschke W, Mazurek S, Stöckl P, et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochemical Journal. 2003;376(2):403-411. doi: 10.1042/bj20030816
- Zhao L, Jia Y, Yan D, et al. Aging-related changes of triose phosphate isomerase in hippocampus of senescence accelerated mouse and the intervention of acupuncture. Neuroscience Letters. 2013;542:59-64. doi: 10.1016/j.neulet.2013.03.002
- Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell. 2014;14(1):1-7. doi: 10.1111/acel.12287
- Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mechanisms of Ageing and Development. 2006;127(1):79-84. doi: 10.1016/j.mad.2005.09.028
- Easlon E, Tsang F, Skinner C, et al. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes & Development. 2008;22(7):931-944. doi: 10.1101/gad.1648308
- Lee S-M, Dho SH, Ju S-K, et al. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology. 2012;13(5):525-536. doi: 10.1007/s10522-012-9397-0
- Mali Y, Zisapels N. Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase. Neurobiology of Disease. 2008;32(1):133-141. doi: 10.1016/j.nbd.2008.06.010
- Collado M, Blasco MA, Serrano M. Cellular Senescence in Cancer and Aging. Cell. 2007;130(2):223-233. doi: 10.1016/j.cell.2007.07.003
- Tan J-K, Jaafar F, Makpol S. Proteomic profiling of senescent human diploid fibroblasts treated with gamma-tocotrienol. BMC Complementary and Alternative Medicine. 2018;18(1). doi: 10.1186/s12906-018-2383-6
- Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences. 1992;89(21):10114-10118. doi: 10.1073/pnas.89.21.10114
- Birsoy K, Wang T, Chen WW, et al. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell. 2015;162(3):540-551. doi: 10.1016/j.cell.2015.07.016
- Sullivan LB, Gui DY, Hosios AM, et al. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell. 2015;162(3):552-563. doi: 10.1016/j.cell.2015.07.017
- Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metabolism. 2016;23(2):303-314. doi: 10.1016/j.cmet.2015.11.011
- Kim JY, Lee SH, Bae I-H, et al. Pyruvate Protects against Cellular Senescence through the Control of Mitochondrial and Lysosomal Function in Dermal Fibroblasts. Journal of Investigative Dermatology. 2018;138(12):2522-2530. doi: 10.1016/j.jid.2018.05.033
- Park S, Kim K, Bae IH, et al. TIMP3 is a CLOCK–dependent diurnal gene that inhibits the expression of UVB–induced inflammatory cytokines in human keratinocytes. The FASEB Journal. 2018;32(3):1510-1523. doi: 10.1096/fj.201700693r
- Fligiel SE, Varani J, Datta SC, et al. Collagen Degradation in Aged/Photodamaged Skin In Vivo and After Exposure to Matrix Metalloproteinase-1 In Vitro. Journal of Investigative Dermatology. 2003;120(5):842-848. doi: 10.1046/j.1523-1747.2003.12148.x
- Ramos-Ibeas P, Barandalla M, Colleoni S, Lazzari G. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Molecular and Cellular Biochemistry. 2017;429(1-2):137-150. doi: 10.1007/s11010-017-2942-z
- Wagner S, Hussain MZ, Hunt TK, et al. Stimulation of fibroblast proliferation by lactate-mediated oxidants. Wound Repair and Regeneration. 2004;12(3):368-373. doi: 10.1111/j.1067-1927.2004.012315.x
Дополнительные файлы
