Methods for measuring respiratory rate based on the analysis of chest wall movements
- Authors: Garanin A.A.1, Rubanenko A.O.1, Shipunov I.D.1, Rogova V.S.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 8, No 4 (2023)
- Pages: 251-258
- Section: Cardiology
- URL: https://bakhtiniada.ru/2500-1388/article/view/232053
- DOI: https://doi.org/10.35693/2500-1388-2023-8-4-251-258
- ID: 232053
Cite item
Full Text
Abstract
Aim of the review – to discuss the respiratory rate (RR) measurement methods that use sensors for analyzing chest wall movements. Strain and movement sensors can be successfully used in real clinical practice, since they can be easily integrated into clothes and garments (electronic textiles) for measuring the respiratory rate in both inpatients and outpatients. Meanwhile, magnetometers, gyroscopes and accelerometers must be located in specific places. One of the main limitations of strain and motion sensors is their sensitivity to patient's breathing-unrelated movements. In order to reduce this limitation, the sensors should most often be placed in the upper part of the chest and integrated into mechanical supports. In addition, it is recommended to use hybrid systems consisting of multiple different sensors. Such systems allow separate analysis of the thoracic and abdominal breathing patterns, providing for wide opportunities to use these sensors for scientific purposes. The use of special polymers and protective materials in a piezoresistive sensors design will allow to overcome their other drawback – the possible influence of environmental factors (for example, temperature or humidity).
Conclusion. All types of the sensors presented in this review showed generally good quality of respiratory curves at rest during normal breathing. However, in most cases, the bias increased in physical activity. The choice of a certain type of sensor for RR assessment should obviously be based on the specific clinical situation, monitoring duration, monitoring conditions (intensive care unit, inpatient, outpatient department), taking into consideration the advantages and disadvantages.
Full Text
##article.viewOnOriginalSite##About the authors
Andrei A. Garanin
Samara State Medical University
Author for correspondence.
Email: a.a.garanin@samsmu.ru
ORCID iD: 0000-0001-6665-1533
PhD, Director of the Research and Practice Center for Telemedicine
Russian Federation, 89 Chapaevskaya st., Samara, 443099Anatolii O. Rubanenko
Samara State Medical University
Email: a.o.rubanenko@samsmu.ru
ORCID iD: 0000-0002-3996-4689
PhD, Associate professor, Chair of Propaedeutic Therapy
Russian Federation, 89 Chapaevskaya st., Samara, 443099Ivan D. Shipunov
Samara State Medical University
Email: i.d.shipunov@samsmu.ru
ORCID iD: 0000-0003-0674-7191
a preventive medicine physician, Research and Practice Center for Telemedicine
Russian Federation, 89 Chapaevskaya st., Samara, 443099Valeriya S. Rogova
Samara State Medical University
Email: v.s.rogova@samsmu.ru
ORCID iD: 0000-0002-7388-8341
a preventive medicine physician, Research and Practice Center for Telemedicine
Russian Federation, 89 Chapaevskaya st., Samara, 443099References
- Massaroni C, Nicolò A, Lo Presti D, et al. Contact-Based Methods for Measuring Respiratory Rate. Sensors (Basel). 2019;19(4):908. doi: 10.3390/s19040908
- De Rossi D, Carpi F, Lorussi F, et al. Electroactive fabrics and wearable biomonitoring devices. AUTEX Res J. 2003;3:180-185.
- Wang J, Xue P, Tao X. Strain sensing behavior of electrically conductive fibers under large deformation. Mater Sci Eng A. 2011;528:2863-2869. doi: 10.1016/j.msea.2010.12.057
- Egami Y, Suzuki K, Tanaka T, et al. Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles. Synth Met. 2011;161:219-224. doi: 10.1016/j.synthmet.2010.11
- Atalay O, Kennon WR, Demirok E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sens J. 2015;15:110-122. doi: 10.1109/jsen.2014.2339739
- Lanatà A, Scilingo EP, Nardini E, et al. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. IEEE Trans Inf Technol Biomed. 2010;14:378-386. doi: 10.1109/titb.2009.2037614
- Paradiso R, Loriga G, Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed. 2005;9:337-344. doi: 10.1109/titb.2005.854512
- Hamdani STA, Fernando A. The application of a piezo-resistive cardiorespiratory sensor system in an automobile safety belt. Sensors. 2015;15:7742-7753. doi: 10.3390/s150407742
- Molinaro N, Massaroni C, Presti DL, et al. Wearable textile based on silver plated knitted sensor for respiratory rate monitoring. EMBC. 18-21 July 2018:2865-2868. doi: 10.1109/embc.2018.8512958
- Chu M, Nguyen T, Pandey V, et al. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit Med. 2019;2:8. doi: 10.1038/s41746-019-0083-3
- Terazawa M, Karita M, Kumagai S, et al. Respiratory Motion Sensor Measuring Capacitance Constructed across Skin in Daily Activities. Micromachines (Basel). 2018;9(11):543. doi: 10.3390/mi9110543
- Kundu SK, Kumagai S, Sasaki M. A wearable capacitive sensor for monitoring human respiratory rate. Jpn J Appl Phys. 2013;52:04CL05. doi: 10.7567/jjap.52.04cl05
- Grlica J, Martinovi´c T, Džapo H. Capacitive sensor for respiration monitoring. IEEE SAS. 13-15 April 2015:1-6. doi: 10.1109/sas.2015.7133567
- Naranjo-Hernández D, Talaminos-Barroso A, Reina-Tosina J, et al. Smart Vest for Respiratory Rate Monitoring of COPD Patients Based on Non-Contact Capacitive Sensing. Sensors. 2018;18:2144. doi: 10.3390/s18072144
- Chadha T, Watson H, Birch S, et al. Validation of respiratory inductive plethysmography using different calibration procedures. Am Rev Respir Dis. 1982;125:644-649.
- Dall’Ava-Santucci J, Armanganidis A. Respiratory inductive plethysmography in Pulmonary Function in Mechanically Ventilated Patients. Springer. Berlin, Germany. 1991:121-142.
- Cabiddu R, Pantoni CB, Mendes RG, et al. Inductive plethysmography potential as a surrogate for ventilatory measurements during rest and moderate physical exercise. Braz J Phys Ther. 2016;20(2):184-8. doi: 10.1590/bjpt-rbf.2014.0147
- Grossman P, Spoerle M, Wilhelm FH. Reliability of respiratory tidal volume estimation by means of ambulatory inductive plethysmography. Biomed Sci Instrum. 2006;42:193-8.
- Dziuda L, Skibniewski FW, Krej M, et al. Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor. IEEE Trans Biomed Eng. 2012;59(7):1934-42. doi: 10.1109/TBME.2012.2194145
- Dziuda L, Krej M, Skibniewski FW. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI. IEEE Sens J. 2013;13:4986-4991. doi: 10.1109/jsen.2013.2279160
- Chethana K, Guru Prasad AS, Omkar SN, et al. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities. J Biophotonics. 2017;10(2):278-285. doi: 10.1002/jbio.201500268
- Ciocchetti M, Massaroni C, Saccomandi P, et al. Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials. Biosensors (Basel). 2015;5(3):602-15. doi: 10.3390/bios5030602
- Massaroni C, Saccomandi P, Formica D, et al. Design and feasibility assessment of a magnetic resonance-compatible smart textile based on fiber Bragg grating sensors for respiratory monitoring. IEEE Sens J. 2016;99:1-1. doi: 10.1109/jsen.2016.2606487
- Massaroni C, Venanzi C, Silvatti AP, et al. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J Biophotonics. 2018;11:e201700263. doi: 10.1002/jbio.201700263
- Lo Presti D, Massaroni C, Saccomandi P, et al. A wearable textile for respiratory monitoring: Feasibility assessment and analysis of sensors position on system response. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:4423-4426. doi: 10.1109/EMBC.2017.8037837
- Krehel M, Schmid M, Rossi RM, et al. An optical fibre-based sensor for respiratory monitoring. Sensors. 2014;14:13088-13101. doi: 10.3390/s140713088
- Augousti A, Maletras F, Mason J. Improved fibre optic respiratory monitoring using a figure-of-eight coil. Physiol Meas. 2005;26:585-590. doi: 10.1088/0967-3334/26/5/001
- Koyama Y, Nishiyama M, Watanabe K. Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring. IEEE Sens J. 2018;18:6175-6180. doi: 10.1109/jsen.2018.2847333
- Fedotov AA. Sensors and respiratory monitoring systems: Guidelines. Samara, 2019;29:26-27. (In Russ.). [Федотов А.А. Датчики и системы респираторного мониторинга: Методические указания. Самара, 2016;29:26-27].
- Gupta AK. Respiration Rate Measurement Based on Impedance Pneumography; Application Report SBAA181; Texas Instruments: Dallas. TX, USA, 2011.
- Trobec R, Rashkovska A, Avbelj V. Two proximal skin electrodes – A respiration rate body sensor. Sensors. 2012;13813-13828. doi: 10.3390/s121013813
- Bawua LK, Miaskowski C, Suba S, et al. Thoracic Impedance Pneumography-Derived Respiratory Alarms and Associated Patient Characteristics. Am J Crit Care. 2022;31(5):355-365. doi: 10.4037/ajcc2022295
- Charlton PH, Bonnici T, Tarassenko L, et al. An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring. Biomed Signal Process Control. 2021;65:102339. doi: 10.1016/j.bspc.2020.102339
- Bawua LK, Miaskowski C, Suba S, et al. Agreement between respiratory rate measurement using a combined electrocardiographic derived method versus impedance from pneumography. J Electrocardiol. 2022;71:16-24. doi: 10.1016/j.jelectrocard.2021.12.006
- Wang FT, Chan HL, Wang CL, et al. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition. Sensors (Basel). 2015;15(7):16372-87. doi: 10.3390/s150716372
- Chen R, Chen K, Dai Y, et al. Utility of transthoracic impedance and novel algorithm for sleep apnea screening in pacemaker patient. Sleep Breath. 2019;23(3):741-746. doi: 10.1007/s11325-018-1755-y
- Bawua LK, Miaskowski C, Hu X, et al. A review of the literature on the accuracy, strengths, and limitations of visual, thoracic impedance, and electrocardiographic methods used to measure respiratory rate in hospitalized patients. Ann Noninvasive Electrocardiol. 2021;26(5):e12885. doi: 10.1111/anec.12885
- Landon C. Respiratory monitoring: Advantages of inductive plethysmography over impedance pneumography. VivoMetrics VMLA. 2002:1-7.
- Lu Y, Wu HT, Malik J. Recycling cardiogenic artifacts in impedance pneumography. Biomedical Signal Processing and Control. 2019;51:162-170. doi: 10.1016/j.bspc.2019.02.027
- Reinvuo T, Hannula M, Sorvoja H, et al. Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure sensor. IEEE Sensors Applications Symposium. 7-9 February 2006:192-195. doi: 10.1109/sas.2006.1634270
- Ivakhno NV, Prokhortsov AV, Senina EN, et al. Method for Registering Movement of the Chest at the Diagnosis of the Sleep Apnea. Journal of New Medical Technologies. 2014;21(4):133-136. (In Russ.). [Ивахно Н.В., Прохорцов А.В., Сенина Е.Н., и др. Способ регистрации движения грудной клетки при диагностике состояния сонного апноэ. Вестник новых медицинских технологий. 2014;21(4):133-136]. doi: 10.12737/7286
- Bates A, Ling MJ, et al. Respiratory rate and flow waveform estimation from tri-axial accelerometer data. International Conference on Body Sensor Networks. 7-9 June 2010:144-150. doi: 10.1109/bsn.2010.50
- Chan AM, Ferdosi N, Narasimhan R. Ambulatory respiratory rate detection using ECG and a triaxial accelerometer. Annu Int Conf IEEE Eng Med Biol Soc. 2013:4058-61. doi: 10.1109/EMBC.2013.6610436
- Liu GZ, Guo YW, Zhu QS, et al. Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemed e-Health. 2011;17:705-711. doi: 10.1089/tmj.2011.0022
- Vertens J, Fischer F, Heyde C, et al. Measuring Respiration and Heart Rate using Two Acceleration Sensors on a Fully Embedded Platform. 3rd International Congress on Sport Sciences Research and Technology Support. 15-17 November 2015:15-23.
- Drummond GB, Fischer D, et al. Classifying signals from a wearable accelerometer device to measure respiratory rate. ERJ Open Res. 2021;7(2):00681-2020. doi: 10.1183/23120541.00681-2020
- Wang S, Liu M, Pang B, et al. A new physiological signal acquisition patch designed with advanced respiration monitoring algorithm based on 3-axis accelerator and gyroscope. 40th Annual International Conference of the IEEE EMBC. 18-21 July 2018:441-444. doi: 10.1109/embc.2018.8512427
- Shen CL, Huang TH, Hsu PC, et al. Respiratory Rate Estimation by Using ECG, Impedance, and Motion Sensing in Smart Clothing. J Med Biol Eng. 2017;37:826-842.
- Romano C, Schena E, Formica D, Massaroni C. Comparison between Chest-Worn Accelerometer and Gyroscope Performance for Heart Rate and Respiratory Rate Monitoring. Biosensors (Basel). 2022;12(10):834. doi: 10.3390/bios12100834
- Milici S, Lázaro A, Villarino R, et al. Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring. IEEE Sens J. 2018;18:2145-2152. doi: 10.1109/jsen.2018.2791400
- Oh Y, Jung YJ, Choi S, et al. Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy. Sensors. 2018;18:2742. doi: 10.3390/s18092742
- McCool FD, Wang J, Ebi KL. Tidal volume and respiratory timing derived from a portable ventilation monitor. Chest. 2002;122:684-691. doi: 10.1378/chest.122.2.684
- Cesareo A, Previtali Y, Biffi E, et al. Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System. Sensors. 2018;19:88. doi: 10.3390/s19010088
- Cesareo A, Gandolfi S, Pini I, et al. A novel, low cost, wearable contact-based device for breathing frequency monitoring. 39th Annual International Conference of the IEEE EMBC. 11-15 July 2017:2402-2405. doi: 10.1109/embc.2017.8037340
Supplementary files
