Архитектура трёхмерной свёрточной нейронной сети для детектирования факта фальсификации видеоряда

Обложка

Цитировать

Полный текст

Аннотация

В статье отражено использование нейросетевых технологий для определения фактов фальсификации содержимого видеорядов. В современном мире новые технологии стали неотъемлемой частью мультимедийной среды, однако их распространение также создало новую угрозу – возможность неправомерного использования для фальсификации содержимого видеорядов. Это приводит к возникновению серьезных проблем, таких как распространение фейковых новостей, дезинформация общества. В научной статье рассматривается данная проблема и определяется необходимость использования нейронных сетей для ее решения. В сравнении с другими существующими моделями и подходами, нейронные сети обладают высокой эффективностью и точностью в обнаружении фальсификации видеоданных благодаря своей способности к извлечению сложных признаков и обучению на больших объемах исходных данных, что особо важно при снижении разрешения анализируемого видеоряда. В рамках данной работы представлена математическая модель идентификации фальсификации аудио и видеоряда в видеозаписи, а также модель на основе трехмерной свёрточной нейронной сети для определения факта фальсификации видеоряда, путём анализа содержимого отдельных кадров. В рамках данной работы было предложено рассмотреть задачу идентификации фальсификатов в видеозаписи, как совместное решение двух задач: идентификации фальсификации аудио- и видеоряда, а сама результирующая задача, была преобразована в классическую задачу классификации. Любая видеозапись может быть отнесена к одной из четырёх групп, описанных в работе. Только видеозаписи, относящиеся к первой группе, считаются аутентичными, а все остальные – сфабрикованными. Для повышения гибкости модели, были добавлены вероятностные классификаторы, что позволяет учитывать степень уверенности в предсказаниях. Особенность полученного решения состоит в возможности настройки пороговых значений, что позволяет адаптировать модель к различным уровням строгости в зависимости от задачи. Для определения сфабрикованных фоторядов предложена архитектура трёхмерной свёрточной нейронной сети, включающей слой предобработки и нейросетевой слой. Полученная модель обладает достаточной степенью точности определения фальсифицированных видеорядов, с учетом значительного понижения разрешения кадров. Апробация модели на тренировочном наборе данных показала долю корректного определения фальсификации видеорядов выше 70%, что заметно лучше угадывания. Несмотря на достаточную точность модель может быть доработана для более существенного увеличения доли корректных предсказаний.

Об авторах

Алексей Николаевич Алпатов

МИРЭА — Российский технологический университет

Email: aleksej01-91@mail.ru
ORCID iD: 0000-0001-8624-1662
доцент; кафедра ИиППО;

Эмиль Зияудинович Терлоев

МИРЭА — Российский технологический университет

Email: emil199@yandex.ru
аспирант; кафедра инструментального и прикладного программного обеспечения;

Василий Тимофеевич Матчин

МИРЭА — Российский технологический университет

Email: matchin@mirea.ru
старший преподаватель; институт информационных технологий;

Список литературы

  1. Beyan E.V. P., Rossy A.G.C. A review of AI image generator: influences, challenges, and future prospects for architectural field // Journal of Artificial Intelligence in Architecture. 2023. V. 2. №. 1. Pp. 53-65.
  2. Huang Y. F., Lv S., Tseng K.K., Tseng P.J., Xie, X., Lin, R.F.Y. Recent advances in artificial intelligence for video production system // Enterprise Information Systems. 2023. V. 17. №. 11. Pp. 2246188.
  3. Albert V. D., Schmidt H. J. Al-based B-to-B brand redesign: A case study // Transfer. 2023. P. 47.
  4. Алиев Э. В. Проблемы использования цифровых технологий в киноиндустрии //European Journal of Arts. 2023. No1. С. 33-37. DOI: https://doi.org/10.29013/EJA-23-1-33-37
  5. Chow, P. S. Ghost in the (Hollywood) machine: Emergent applications of artificial intelligence in the film industry // NECSUS_European Journal of Media Studies. 2020. V. 9. №. 1. Pp. 193-214.
  6. Лемайкина С. В. Проблемы противодействия использования дипфейков в преступных целях // Юристъ-Правоведъ. 2023. No 2(105). С. 143-148.
  7. Vakilinia I. Cryptocurrency giveaway scam with youtube live stream // 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 2022. Pp. 0195-0200.
  8. Tran D., Wang H., Torresani L., Ray J., LeCunY., Paluri M. A closer look at spatiotemporal convolutions for action recognition // Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018. Pp. 6450-6459.
  9. Naik K. J., Soni A. Video classification using 3D convolutional neural network // Advancements in Security and Privacy Initiatives for Multimedia Images. IGI Global. 2021. Pp. 1-18.
  10. ZF DeepFake Dataset [Электронный ресурс] URL: https://www.kaggle.com/datasets/zfturbo/zf-deepfake-dataset (дата обращения: 20.01.2024).
  11. Garbin C., Zhu X., Marques O. Dropout vs. batch normalization: an empirical study of their impact to deep learning // Multimedia tools and applications. 2020. V. 79. №. 19. Pp. 12777-12815.
  12. Zhou D. X. Theory of deep convolutional neural networks: Downsampling // Neural Networks. 2020. V. 124. Pp. 319-327.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».