Forensic medical determination of the age of fractures based on X-ray research methods: A literature review

Cover Page

Cite item

Full Text

Abstract

Fractures of various locations as a result of traumatism rank second in both Russia and abroad. In Iran, and in the daily work of a forensic expert, skeletal trauma, if not prevalent, is one of the injuries encountered during the examination of victims, accused, and other persons. In addition to determining the mechanism of bone fracture formation, experts face cases of persistent injuries. Determining the time of the occurrence of bodily injuries in living persons generally does not involve special labor if full-fledged research objects are available. A much more difficult task is determining the age of a bone fracture from control radiographs, without primary clinical and radiological data, when the expert is provided with only control radiographs of the area of interest, which were taken after a long time has elapsed from the time of injury. In modern domestic and foreign scientific sources, no clear criteria have been established for determining the age of fractures based radiographs. Although some studies have been devoted to this issue in forensic medical literature, they are based on the results of nonradiological research methods: histological, histochemical, fractographic, ultrasound, and others. In the specialized literature on traumatology, determining the age of fractures since occurrence is not a priority. The analysis of literary sources shows the relevance of research on radiography methods for forensic medical practice.

About the authors

Yulia B. Li

Moscow Regional Research and Clinical Institute; Primorsky Regional Bureau of Forensic Medicine

Author for correspondence.
Email: reineerdeluft@gmail.com
ORCID iD: 0000-0001-7870-5746
SPIN-code: 2397-7425

MD

Russian Federation, Moscow; Vladivostok

Marina V. Vishniakova

Moscow Regional Research and Clinical Institute

Email: cherridra@mail.ru
ORCID iD: 0000-0003-3838-636X
SPIN-code: 1137-2991

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Aleksandr V. Maksimov

Moscow Regional Research and Clinical Institute; Federal State University of Education

Email: mcsim2002@mail.ru
ORCID iD: 0000-0003-1936-4448
SPIN-code: 3134-8457

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow

References

  1. Volotovsky PA, Sitnik AA, Beletsky AV. Infections after osteosynthesis of lower extremity long bones: Etiology, classification and diagnosis. Voennaya meditsina. 2018;(1):83–89. EDN: YPMQSE
  2. Matveev RP, Bragina SV. Radiology in traumatology and orthopedics: Selected sections: textbook. Arkhangelsk: Izd-vo Severnogo gosudarstvennogo meditsinskogo universiteta; 2018. 151 p. EDN: VMGEUT
  3. Salaev AV. Experimental and clinical assessment of the stability of extrafocal osteosynthesis of tubular bones with a new rod apparatus [dissertation abstract]: 14.01.15. Place of defence: Samara State Medical University. Penza; 2020. 20 р. (In Russ).
  4. Cherkashina ZA. Traumatology and orthopedics. Vol. 1. Moscow: Meditsinskoe informatsionnoe agentstvo; 2017. 544 p. (In Russ).
  5. Kokoreva I, Korenkov A, Solovyov I. Effect of osteomed forte on the terms of bone fracture consolidation in children and adolescents. Vrach. 2020;31(1):82–85. EDN: OTFBDD doi: 10.29296/25877305-2020-01-18
  6. Rasulova MR, Indiaminov SI. Possibilities of establishing the age of nasal bone fractures by methods of radial diagnostics. In: The 6 th International scientific and practical conference: Eurasian scientific congress (June 14–16, 2020) Barca Academy Publishing, Barcelona, Spain; 2020. P. 91.
  7. Strukov AI. Pathological anatomy: A textbook for students of higher professional education institutions. 6th ed., revised and additional. Moscow: GEOTAR-Media; 2019. 878 p. (In Russ).
  8. Thompson EM, Matsiko A, Farrell E, et al. Recapitulating endochondral ossification: A promising route to in vivo bone regeneration. J Tissue Eng. Regen Med. 2015;9(8):889–902. doi: 10.1002/term.1918
  9. Kaplan AV. Damage to bones and joints. 3rd ed. Moscow: Meditsina; 1979. 568 p.
  10. Albes G. Facharztprüfung radiologie: 5 aktualisierte und erweiterte Auflage. Stuttgart: Thieme (Verlag); 2022. 928 р.
  11. Volotovsky AI, Makarevich ER, Chirak VE. Bone tissue regeneration in normal and pathological conditions: method. recommendations. Minsk: Belarusian State Medical University; 2010. 24 p. (In Russ).
  12. Lyritis GP. Fracture healing and antiosteoporotic treatment. Osteoporoz i osteopatii. 2012;15(3):41–44. EDN: PWXZQX
  13. Chulikhina NA, Shestopalov KK, Plaksin VO. Comprehensive assessment of the duration of fractures in local damage to the diaphyseal sections of long tubular bones using an x-ray diagnostic method. Problemy ekspertizy v meditsine. 2001;1(4):3–6. EDN: ONJRLZ
  14. Brusko AT, Gaiko GV. Modern concepts of stages of bone tissue fractures reparative regeneration. Vіsnik ortopedії, travmatologії ta protezuvannya. 2014;(2):5–8. EDN: TDOIMN
  15. Volkov AV. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery [dissertation abstract]: 14.03.02. Place of defence: Peoples' Friendship University of Russia. Moscow; 2019. 48 р. (In Russ).
  16. Kavalersky GM, Garkavi AV, Silini LL, et al. Traumatology and orthopedics: textbook. Ed. by G.M. Kavalersky. 4th ed. Moscow: Akademiya; 2019. 636 p. (In Russ).
  17. Nagornov MN, Osipenkova-Vichtomova TK. Forensic medical aspects of bone tissue injuries and pathology. Forensic Med Exp. 2012;55(1):41–44. EDN: PEUKLJ
  18. Osipenkova-Vichtomova TK. Forensic histological examination of bone tissue. Moscow: Vikra; 2000. 144 p. (In Russ).
  19. Peksheva MS, Rankov MM, Petrova IV. The difficulties of radiological diagnosis phenomen of dysregeneration long bones fractures based on clinical cases. Med Visualizat. 2021;25(1):164–176. EDN: DSLATE doi: 10.24835/1607-0763-810
  20. Zagorodniy NV, Belinov NV. Fractures of the proximal femur. Moscow: GEOTAR-Media; 2020. 128 p. (In Russ).
  21. Sharmazanova EP, Moseliani H. X-ray diagnosis of false joint in tibial fractures. Promeneva dіagnostika, promeneva terapіya. 2016;4(3):111–114. (In Russ).
  22. Sharmazanova EP, Moseliani H. Analysis of reparative osteogenesis in diaphyseal fractures of tibia bones according to radiography. ScienceRise: Medical Science. 2017;8(16):51–53. (In Russ).
  23. Potekhina YP, Filatova AI, Tregubova ES, Mokhov DE. Mechanosensitivity of cells and its role in the regulation of physiological functions and the implementation of physiotherapeutic effects (review). Modern Technolog Med. 2020;12(4):77–90. EDN: BTRYBI doi: 10.17691/stm2020.12.4.10
  24. Sirak SV, Didenko MO, Sirak AG, et al. The role of mechanotransduction in the activation of physiological remodeling histione. Med News North Caucasus. 2021;16(4):399–404. EDN: KOWIQS doi: 10.14300/mnnc.2021.16095
  25. Borciani G., Montalbano G., Baldini N., et al. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;(108):22–45. EDN: ZLUBCF doi: 10.1016/j.actbio.2020.03.043
  26. Chang B, Liu X. Osteon: Structure, turnover, and regeneration. Tissue Eng Part B Rev. 2022;28(2):261–278 doi: 10.1089/ten.TEB.2020.0322
  27. Entezari A, Swain MV, Gooding JJ, et al. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomater. 2020;(118):100–112. EDN: WMPRMR doi: 10.1016/j.actbio.2020.10.012
  28. Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res. 2019;37(6):1263–1269. doi: 10.1002/jor.24205
  29. Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone Research. 2021;(149):115971. EDN: YZPJPU doi: 10.1016/j.bone.2021.115971
  30. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–327. doi: 10.1177/0004563218759371
  31. Monemian Esfahani A, Rosenbohm J, Reddy K, et al. Tissue regeneration from mechanical stretching of cell-cell adhesion. Tissue Eng. Part C. Methods. 2019;25(11):631–640. doi: 10.1089/ten.TEC.2019.0098
  32. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Research. 2020;(8):23. EDN: HYWSBV doi: 10.1038/s41413-020-0099-y
  33. Lindenbratei LD, Korolyuk IP. Medical radiology (basics of radiation diagnostics and radiation therapy): Textbook. 2nd ed., revised and additional. Moscow: Meditsina; 2000. 672 p. (In Russ).
  34. Reinberg SA. X-ray diagnosis of diseases of bones and joints. In two books. Vol. 1–2. Ed. 4, Spanish and additional. Moscow: Meditsina; 1964. 1104 p. (In Russ).
  35. Burov SA, Reznikov BD. Radiology in forensic medicine. Saratov: Izdatel'stvo Saratovskogo universiteta; 1975. 288 p. (In Russ).
  36. Ilyasova EB, Chekhonatskaya ML, Priezzhev VN. Radiation diagnostics. 2nd ed. Moscow: GEOTAR-Media; 2021. 430 p. (In Russ).
  37. Lagunova IG. X-ray anatomy of the skeleton (a guide for doctors). Moscow: Meditsina; 1981. 368 p. (In Russ).
  38. Garkavi AV, Lychagin AV, Kavalerskiy GM, et al. Traumatology and orthopedics. Moscow: GЕОTAR-Media; 2023. 784 p. (In Russ).
  39. Grebenkov AB. Forensic medical assessment of nasal bone fractures: reference and information materials. Kursk; 2015. 28 p. (In Russ).
  40. Pankratov AS, Rubtsov AA, Ogurtsov DA, et al. Current trends in the development of long tubular bones osteosynthesis. Sci Innovat Med. 2022;7(4):281–288. EDN: XBSMBG doi: 10.35693/2500-1388-2022-7-4-281-288
  41. Zedgenizdze GA. Clinical X-ray radiology. Vol. 3. Moscow: Meditsina; 1984. 463 р. (In Russ).
  42. Romanov PG, Devyaterikov AA, Shtempelyuk YR. Problems of forensic medical assessment of nasal bone fractures. Izbrannye voprosy sudebno-meditsinskoi ekspertizy. 2022;(21):103–105. EDN: COZRPM
  43. Panin MG, Bogdashevskaya VB, Alekseev AV. Characteristics of bone wound healing after vertical osteotomy of the branches of the lower jaw according to radiological data. Moscow: Moskovskii meditsinskii stomatologicheskii institut im. N.A. Semashko; 1990. 6 p. (In Russ).
  44. Pigolkin YuI, Nagornov MN, Lomyga PA, Barinov EKh. Features of healing of calvarial fractures. Sudebno-meditsinskaya ekspertiza. 2005;(1):7–10. (In Russ).
  45. Gabunia GV. Timing of osteosynthesis and some features of the process of consolidation of long tubular bones in combined traumatic brain injury. Meditsinskie novosti Gruzii. 2000;(6):15–18. (In Russ).
  46. Matsukatov FA, Gerasimov DV. Factors affecting theterms of fracture consolidation. N.N. Priorov J Traumatol Orthopedics. 2016;(2):50–57. EDN: WGESEZ
  47. Klimovtsky VG, Chernysh VY. Frequency of delayed consolidation of fractures in victims of different age groups and the influence of osteotropic therapy on it. Trauma. 2011;12(3):89–93. (In Russ).
  48. Prokhorov M, Kislov A, Elistratov D, et al. Effect of osteomed on consolidation of bone fractures. Vrach. 2016;(2):68–69. EDN: VQZUOX
  49. Lubenets A. Treatment of proximal femur injuries in older age group patients. Vrach. 2017;(7):66–67. EDN: ZEWQCP
  50. Lindenbraten LD, Naumov LB. Medical radiology. 2nd ed., revised. and additional. Moscow: Meditsina; 1984. 384 p. (In Russ).
  51. Protsenko AI, Gazhev AK, Gordeev GG, Zheltikov DI. The use of hydroxyapatite substance for the ostheosynthesis after comminuted thigh fractures. N.I. Pirogov J Surg. 2012;(1):10–14. EDN: PEJVLT
  52. Sadykova RI, Akhtyamov IF. Modern methods of medication and local therapy for delayed fracture consolidation (literature review). Genij ortopedii. 2022;28(1):116–122. EDN: NKPQNZ doi: 10.18019/1028-4427-2022-28-1-116-122
  53. Zavadovskaya VD, Popov VP, Akbashev OE, et al. Ultrasound monitoring of consolidation processes in fractures of long tubular bones in osteosynthesis using bioactive implants. J Radiol Nuclear Med. 2014;(5):40–48. EDN: TBCPJX
  54. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012;8(3):133–143. doi: 10.1038/nrrheum.2012.1
  55. Verhoff MA, Kreutz K, Ramsthaler F, Schiwy-Bochat KH. Forensische anthropologie und osteology: Übersicht und definitionen. Dtsch Arztebl. 2006;103(12):A782–788.
  56. Stoss H, Pontz B, Brenner R, et al. Pathologisch-anatomische befunde am callus bei osteogenesis imperfecta. Aktuelle Aspekte der Osteologie. Springer-Verlag Berlin Heidelberg; 1992. P. 264–270.
  57. Albrecht K, Breitmeier D, Huefner T. Die pathomorphologie der calcaneusfraktur beim PKW-unfall. German; 2005. P. 248–252.
  58. Asadi K, Mardani-Kivi M, Aris A. The effect of substance abuse and smoking status on healing time of closed transverse femoral shaft fractures treated with open intramedullary nailing. Genij ortopedii. 2022;28(3):333–337. doi: 10.18019/1028-4427-2022-28-3-333-337

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of a bone callus [2]: 1 ― periosteal; 2 ― endosteal; 3 ― intermediate; 4 ― paraosseous.

Download (135KB)
3. Fig. 2. X-ray picture of the development of a fracture of the diaphysis of the ulna: а ―1 day; b ― 1 month; c ― 1.5 months.

Download (144KB)
4. Fig. 3. Fracture of the radial diaphysis: 5 months.

Download (130KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».