子宫内膜增生的遗传标志物:从发病机制到个体化治疗

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

子宫内膜增生,尤其在围绝经期,是妇科领域具有重要临床意义的问题之一,因为其向子宫内膜癌恶变的风险由基因异常与激素失衡之间的复杂相互作用共同决定。有观点认为,多种遗传标志物(ESR1、C-MYC、PIK3CA、PTENP1、MTHFR、EGFR)可能通过影响细胞增殖、凋亡以及 DNA 甲基化的调控而参与子宫内膜增生的发生机制。ESR1基因多态性可增加雌激素受体密度,从而增强子宫内膜的增殖反应。C-MYC的高表达与向不典型增生形式的进展呈相关性,但在生理性再生过程中同样可见。PIK3CA突变会造成PI3K/AKT/mTOR通路的持续激活,并与治疗抵抗有关。PTENP1假基因功能缺失破坏了对抑癌基因PTEN的调控,促进失控增殖。MTHFR多态性导致DNA甲基化受损,提高对表观遗传异常的易感性。EGFR过表达通过MAPK/ERK通路增强增殖效应,且在伴有肥胖的患者中更为常见。这些标志物的临床意义往往依赖于基础状态;由于人群差异及研究方法的异质性,其作用仍不完全明确。未来治疗的一个前景方向是建立整合性预测模型,将基因检测与临床参数相结合,用于风险分层及子宫内膜癌的早期预防。

作者简介

Alexey V. Overko

Pirogov Russian National Research Medical University

编辑信件的主要联系方式.
Email: leha.overko@yandex.ru
ORCID iD: 0000-0002-4629-9074
SPIN 代码: 5519-2836
俄罗斯联邦, Moscow

Tatiana F. Kovalenko

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: t_kov@mail.ru
ORCID iD: 0000-0001-6091-892X
SPIN 代码: 6866-1360

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Lyudmila A. Ozolinya

Pirogov Russian National Research Medical University

Email: ozolinya@yandex.ru
ORCID iD: 0000-0002-2353-123X
SPIN 代码: 9407-9014

MD, Dr. Sci. (Medicine); Professor

俄罗斯联邦, Moscow

Svetlana A. Khlynova

Pirogov Russian National Research Medical University

Email: doc-khlinova@mail.ru
ORCID iD: 0000-0003-1554-3633
SPIN 代码: 7823-2660

MD, Cand. Sci. (Medicine); Assistant Professor

俄罗斯联邦, Moscow

Tatiana N. Savchenko

Pirogov Russian National Research Medical University

Email: 12111944t@mail.ru
ORCID iD: 0000-0001-7244-4944
SPIN 代码: 3157-3682

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

参考

  1. Wang L, Wei W, Cai M. A review of the risk factors associated with endometrial hyperplasia during perimenopause. Int J Womens Health. 2024;16:1475–1482. doi: 10.2147/IJWH.S481509
  2. Pace L, Actis S, Mancarella M, et al. Clinical, sonographic, and hysteroscopic features of endometrial carcinoma diagnosed after hysterectomy in patients with a preoperative diagnosis of atypical hyperplasia: a single-center retrospective study. Diagnostics (Basel). 2022;12(12):3029. doi: 10.3390/diagnostics12123029
  3. Jeong O, Broaddus RR, Lessey BA, et al. MIG-6 is critical for progesterone responsiveness in human complex atypical hyperplasia and early-stage endometrial cancer. Int J Mol Sci. 2022;23(23):14596. doi: 10.3390/ijms232314596
  4. Martínez-Rodríguez A, Fuentes-Antrás J, Lorca V, et al. Molecular profiling of endocrine resistance in HR+/HER2-metastatic breast cancer: insights from extracellular vesicles-derived DNA and ctDNA in liquid biopsies. Int J Mol Sci. 2024;25(23):13045. doi: 10.3390/ijms252313045
  5. Nees LK, Heublein S, Steinmacher S, et al. Endometrial hyperplasia as a risk factor of endometrial cancer. Arch Gynecol Obstet. 2022;306(2):407–421. doi: 10.1007/s00404-021-06380-5
  6. Chen L, Zhu G, Liu Y, et al. Identification of inflammatory-related gene signatures to predict prognosis of endometrial carcinoma. BMC Genom Data. 2022;23(1):74. doi: 10.1186/s12863-022-01088-0
  7. Terlikowska KM, Dobrzycka B, Terlikowski R, et al. Clinical value of selected markers of angiogenesis, inflammation, insulin resistance and obesity in type 1 endometrial cancer. BMC Cancer. 2020;20(1):921. doi: 10.1186/s12885-020-07415-x
  8. Bhave MA, Quintanilha JCF, Tukachinsky H, et al. Comprehensive genomic profiling of ESR1, PIK3CA, AKT1, and PTEN in HR(+)HER2(−) metastatic breast cancer: prevalence along treatment course and predictive value for endocrine therapy resistance in real-world practice. Breast Cancer Res Treat 2024;207(3):599–609. doi: 10.1007/s10549-024-07376-w
  9. Zhang N, Meng Y, Mao S, et al. FBXO31-mediated ubiquitination of OGT maintains O-GlcNAcylation homeostasis to restrain endometrial malignancy. Nat Commun. 2025;16(1):1274. doi: 10.1038/s41467-025-56633-z
  10. Tolaney SM, Toi M, Neven P, et al. Clinical significance of PIK3CA and ESR1 mutations in circulating tumor DNA: analysis from the MONARCH 2 study of abemaciclib plus fulvestrant. Clin Cancer Res. 2022;28(8):1500–1506. doi: 10.1158/1078-0432.CCR-21-3276
  11. Lv M, Chen P, Bai M, et al. Progestin resistance and corresponding management of abnormal endometrial hyperplasia and endometrial carcinoma. Cancers (Basel). 2022;14(24):6210. doi: 10.3390/cancers14246210
  12. Halla K. Emerging treatment options for advanced or recurrent endometrial cancer. J Adv Pract Oncol. 2022;13(1):45–59. doi: 10.6004/jadpro.2022.13.1.4
  13. Liu NT, Perng CL, Chou YC, et al. Loss of ten-eleven translocation 1 (TET1) expression as a diagnostic and prognostic biomarker of endometrial carcinoma. PLoS One. 2021;16(11):e0259330. doi: 10.1371/journal.pone.0259330
  14. Berceanu C, Cernea N, Căpitănescu RG, et al. Endometrial polyps. Rom J Morphol Embryol. 2022;63(2):323–334. doi: 10.47162/RJME.63.2.04
  15. Taghavipour M, Sadoughi F, Mirzaei H, et al. Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci. 2020;10:12. doi: 10.1186/s13578-020-0381-0
  16. Zabolotnaya MS, Levitskaya NV, Ivanov SA, Kaprin AD. Molecular features of endometrial cancer: entering the era of precision medicine. Problems in Oncology. 2023;69(6):971–976. doi: 10.37469/0507-3758-2023-69-6-971-976 EDN: HNUFFO
  17. Ma Y, Zheng L, Gao Y, et al. A comprehensive overview of circrnas: emerging biomarkers and potential therapeutics in gynecological cancers. Front Cell Dev Biol. 2021;9:709512. doi: 10.3389/fcell.2021.709512
  18. Dobroch J, Bojczuk K, Kołakowski A, et al. The exploration of chemokines importance in the pathogenesis and development of endometrial cancer. Molecules. 2022;27(7):2041. doi: 10.3390/molecules27072041
  19. Soberanis Pina P, Lheureux S. Novel molecular targets in endometrial cancer: mechanisms and perspectives for therapy. Biologics. 2024;18:79–93. doi: 10.2147/BTT.S369783
  20. De Martinis M, Sirufo MM, Nocelli C, et al. Hyperhomocysteinemia is associated with inflammation, bone resorption, vitamin B12 and folate deficiency and MTHFR C677T polymorphism in postmenopausal women with decreased bone mineral density. Int J Environ Res Public Health. 2020;17(12):4260. doi: 10.3390/ijerph17124260
  21. Bostan IS, Mihaila M, Roman V, et al. Landscape of endometrial cancer: molecular mechanisms, biomarkers, and target therapy. Cancers (Basel). 2024;16(11):2027. doi: 10.3390/cancers16112027
  22. Chen H, Strickland AL, Castrillon DH. Histopathologic diagnosis of endometrial precancers: Updates and future directions. Semin Diagn Pathol. 2022;39(3):137–147. doi: 10.1053/j.semdp.2021.12.001
  23. Ordiyants IM, Kuular AA, Yamurzina AA, Bazieva TA. Modern outlooks on prevalence of esr1 and prg polymorphism in women of reproductive age with endometrial hyperplasia. Ulyanovsk Medico-Biological Journal. 2020;(3):112–120. doi: 10.34014/2227-1848-2020-3-112-120 EDN: KIHVWD
  24. Soiffer JL, Fife AJ, Gadad SS, et al. Durable partial response to pembrolizumab, lenvatinib, and letrozole in a case of recurrent uterine carcinosarcoma with ESR1 gene amplification. Gynecol Oncol Rep. 2024;54:101426. doi: 10.1016/j.gore.2024.101426
  25. Ge Y, Ni X, Li J, et al. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett. 2023;26(6):530. doi: 10.3892/ol.2023.14117
  26. Nagel A, Szade J, Iliszko M, et al. Clinical and biological significance of esr1 gene alteration and estrogen receptors isoforms expression in breast cancer patients. Int J Mol Sci. 2019;20(8):1881. doi: 10.3390/ijms20081881
  27. Li X, Lu J, Zhang L, et al. Clinical implications of monitoring ESR1 mutations by circulating tumor DNA in estrogen receptor positive metastatic breast cancer: a pilot study. Transl Oncol. 2020;13(2):321–328. doi: 10.1016/j.tranon.2019.11.007
  28. Hao Q, Wu H, Liu E, Wang L. BUB1, BUB1B, CCNA2, and CDCA8, along with miR-524-5p, as clinically relevant biomarkers for the diagnosis and treatment of endometrial carcinoma. BMC Cancer. 2023;23(1):995. doi: 10.1186/s12885-023-11515-9
  29. Ferrando L, Vingiani A, Garuti A, et al. ESR1 gene amplification and MAP3K mutations are selected during adjuvant endocrine therapies in relapsing Hormone Receptor-positive, HER2-negative breast cancer (HR+ HER2– BC). PLoS Genet. 2023;19(1):e1010563. doi: 10.1371/journal.pgen.1010563
  30. Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen receptor alpha mutations, truncations, heterodimers, and therapies. Endocrinology. 2024;165(6):bqae051. doi: 10.1210/endocr/bqae051
  31. Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep. 2024;30(4):180. doi: 10.3892/mmr.2024.13304
  32. Wang Y, Tan S, Pan E, et al. An effective hormonal therapy for a patient with estrogen receptor 1 (ESR1)-amplified metastatic ovarian cancer: a case report. Onco Targets Ther. 2022;15:643–649. doi: 10.2147/OTT.S363856
  33. McAnulty J, DiFeo A. The Molecular ‘myc-anisms’ behind myc-driven tumorigenesis and the relevant myc-directed therapeutics. Int J Mol Sci. 2020;21(24):9486. doi: 10.3390/ijms21249486
  34. Qi Y, Ma N, Zhang J. Tripartite motif containing 33 demonstrated anticancer effect by degrading c-Myc: Limitation of glutamine metabolism and proliferation in endometrial carcinoma cells. Int J Oncol. 2023;63(6):133. doi: 10.3892/ijo.2023.5581
  35. Broeker CD, Ortiz MMO, Murillo MS, Andrechek ER. Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity. Breast Cancer Res. 2023;25(1):120. doi: 10.1186/s13058-023-01723-3
  36. Tinsley SL, Allen-Petersen BL. PP2A and cancer epigenetics: a therapeutic opportunity waiting to happen. NAR Cancer. 2022;4(1):zcac002. doi: 10.1093/narcan/zcac002
  37. Kamentseva RS, Kharchenko MV, Gabdrahmanova GV, et al. EGF, TGF-α and amphiregulin differently regulate endometrium-derived mesenchymal stromal/stem cells. Int J Mol Sci. 2023;24(17):13408. doi: 10.3390/ijms241713408
  38. Saito A, Yoshida H, Nishikawa T, Yonemori K. Human epidermal growth factor receptor 2 targeted therapy in endometrial cancer: clinical and pathological perspectives. World J Clin Oncol. 2021;12(10):868–881. doi: 10.5306/wjco.v12.i10.868
  39. Russo M, Newell JM, Budurlean L, et al. Mutational profile of endometrial hyperplasia and risk of progression to endometrioid adenocarcinoma. Cancer. 2020;126(12):2775–2783. doi: 10.1002/cncr.32822
  40. Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20(10):815–834. doi: 10.2174/1568026620666200303123102
  41. Li Y, Hung SW, Zheng X, et al. Melatonin inhibits endometriosis growth via specific binding and inhibition of EGFR phosphorylation. J Pineal Res. 2024;76(8):e70022. doi: 10.1111/jpi.70022
  42. Liu X, Yang S, Hart JR, et al. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci USA. 2021;118(45):e2109327118. doi: 10.1073/pnas.2109327118
  43. Gonzalez-Bosquet J, Bakkum-Gamez JN, Weaver AL, et al. PP2A and E3 ubiquitin ligase deficiencies: Seminal biological drivers in endometrial cancer. Gynecol Oncol. 2021;162(1):182–189. doi: 10.1016/j.ygyno.2021.04.008
  44. Bredin HK, Krakstad C, Hoivik EA. PIK3CA mutations and their impact on survival outcomes of patients with endometrial cancer: a systematic review and meta-analysis. PLoS One. 2023;18(3):e0283203. doi: 10.1371/journal.pone.0283203
  45. Hayama S, Nakamura R, Ishige T, et al. The impact of PIK3CA mutations and PTEN expression on the effect of neoadjuvant therapy for postmenopausal luminal breast cancer patients. BMC Cancer. 2023;23(1):384. doi: 10.1186/s12885-023-10853-y
  46. Zhang G, Nie F, Zhao W, et al. Comparison of clinical characteristics and prognosis in endometrial carcinoma with different pathological types: a retrospective population-based study. World J Surg Oncol. 2023;21(1):357. doi: 10.1186/s12957-023-03241-0
  47. Passarelli A, Carbone V, Pignata S, et al. Alpelisib for PIK3CA-mutated advanced gynecological cancers: First clues of clinical activity. Gynecol Oncol. 2024;183:61–67. doi: 10.1016/j.ygyno.2024.02.029
  48. Xue Y, Dong Y, Lou Y, et al. PTEN mutation predicts unfavorable fertility preserving treatment outcome in the young patients with endometrioid endometrial cancer and atypical hyperplasia. J Gynecol Oncol. 2023;34(4):e53. doi: 10.3802/jgo.2023.34.e53
  49. Kovalenko TF, Morozova KV, Pavlyukov MS, et al. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS One. 2021;16(1):e0243093. doi: 10.1371/journal.pone.0243093
  50. Lucas E, Niu S, Aguilar M, et al. Utility of a PAX2, PTEN, and β-catenin Panel in the Diagnosis of Atypical Hyperplasia/Endometrioid Intraepithelial Neoplasia in Endometrial Polyps. Am J Surg Pathol. 2023;47(9):1019–1026. doi: 10.1097/PAS.0000000000002076
  51. Li L, Yue P, Song Q, et al. Genome-wide mutation analysis in precancerous lesions of endometrial carcinoma. J Pathol. 2021;253(1):119–128. doi: 10.1002/path.5566
  52. Gotoh O, Sugiyama Y, Tonooka A, et al. Genetic and epigenetic alterations in precursor lesions of endometrial endometrioid carcinoma. J Pathol. 2024;263(3):275–287. doi: 10.1002/path.6278
  53. Pawlik P, Kurzawińska G, Ożarowski M, et al. Common variants in one-carbon metabolism genes (MTHFR, MTR, MTHFD1) and depression in gynecologic cancers. Int J Mol Sci. 2023;24(16):12574. doi: 10.3390/ijms241612574
  54. Ye M, Xu G, Zhang L, et al. Meta analysis of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and its association with folate and colorectal cancer. BMC Cancer. 2025;25(1):169. doi: 10.1186/s12885-025-13546-w
  55. Aguilar M, Zhang H, Zhang M, et al. Serial genomic analysis of endometrium supports the existence of histologically indistinct endometrial cancer precursors. J Pathol. 2021;254(1):20–30. doi: 10.1002/path.5628
  56. Daily LR, Boone JD, Machemehl HC, et al. Does obesity affect pathologic agreement of initial and final tumor grade of disease in endometrial cancer patients? Int J Gynecol Cancer. 2017;27(4):714–719. doi: 10.1097/IGC.0000000000000935

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).