Квантовая когерентность и супертуннельный эффект: волновая и корпускулярная природа квантовых объектов в интерферометре Маха–Цендера

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье рассматривается волновая и корпускулярная природа квантовых объектов на примере интерферометра Маха–Цендера и обсуждается возможность так называемого «супертуннельного эффекта». Показано, как поведение фотона в интерферометре определяется не переключением между волной и частицей, а сохранением или утратой когерентности его квантовой амплитуды. Рассмотрены ключевые механизмы: образование суперпозиции на делителе лучей, интерференция при совмещении амплитуд, разрушение когерентности вследствие утечки информации о пути (декогеренция) и восстановление интерференции в схемах типа квантового эрайзера. Обсуждаются аналогичные явления для электронов, нейтронов, атомов и крупных молекул; выделяются источники декогеренции и факторы, ограничивающие наблюдаемость интерференции и туннелирования у массивных объектов (уменьшение длины де Бройля, столкновения, тепловое излучение, внутренние степени свободы). Аналитически описано влияние массы, импульса и параметров барьера на вероятность туннелирования, а также способы ее увеличения (реконфигурация барьера, резонансные механизмы, коллективные эффекты и понижение эффективной массы). Делается вывод, что квантовые правила универсальны: волновые и корпускулярные проявления зависят от экспериментальной постановки и степени сохранения когерентности, а не от внутреннего превращения частицы. Обсуждается концепция «супертуннелирования» как экспериментально достижимой при преодолении декогеренции и экспоненциальных ограничений, и намечены возможные пути для его реализации.

Об авторах

Рустам Хакимович Рахимов

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Автор, ответственный за переписку.
Email: rustam-shsul@yandex.com
SPIN-код: 3026-2619

доктор технических наук, заведующий лабораторией № 1

Узбекистан, г. Ташкент

Владимир Петрович Ермаков

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: labimanod@uzsci.net
ORCID iD: 0000-0002-0632-6680
Scopus Author ID: 7103059323
ResearcherId: ABH-9486-2020

старший научный сотрудник лаборатории № 1

Узбекистан, г. Ташкент

Список литературы

  1. Попов В.С. Туннельная и многофотонная ионизация атомов и ионов в сильном лазерном поле (теория Келдыша) // Успехи физических наук. 2004. Т. 174. № 9. С. 921–955.
  2. Рахимов Р.Х., Саидов М.С., Ермаков В.П. Особенности синтеза функциональной керамики с комплексом заданных свойств радиационным методом. Ч. 5. Механизм генерации импульсов функциональной керамикой // Computational Nanotechnology. 2016. № 2. С. 81–93.
  3. Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational Nanotechnology. 2024. Т. 11. № 1. С. 193–213. doi: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
  4. Рахимов Р.Х., Ермаков В.П. Импульсный туннельный эффект. Особенности взаимодействия с веществом. Эффект наблюдателя // Computational Nanotechnology. 2024. Т. 11. № 2. С. 115–144. doi: 10.33693/2313-223X-2024-11-2-115-144. EDN: MWBRQW.
  5. Рахимов Р.Х., Ермаков В.П. Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта // Computational Nanotechnology. 2024. Т. 11. № 1. С. 214–223. doi: 10.33693/2313-223X-2024-11-1-214-223. EDN: EYKREQ.
  6. Рахимов Р.Х., Ермаков В.П. Особенности процесса полимеризации на основе ИТЭ // Computational Nanotechnology. 2024. Т. 11. № 2. С. 158–174. doi: 10.33693/2313-223X-2024-11-2-158-174. EDN: MXFORZ.
  7. Рахимов Р.Х., Ермаков В.П. Особенности процесса полимеризации на современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. C. 11–25. doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  8. Рахимов Р.Х., Паньков В.В., Ермаков В.П., Махнач Л.В. Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики // Computational Nanotechnology. 2024. Т. 11. № 1. С. 224–234. doi: 10.33693/2313-223X-2024-11-1-224-234. EDN: FCGMYR.
  9. Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Исследование свойств функциональной керамики, синтезированной модифицированным карбонатным методом // Computational Nanotechnology. 2023. Т. 10. № 3. C. 130–143. doi: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
  10. Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов // Computational Nanotechnology. 2024. Т. 11. № 2. С. 175–191. doi: 10.33693/2313-223X-2024-11-2-175-191. EDN: NHSAVQ.
  11. Рахимов Р.Х., Паньков В.В., Саидвалиев Т.С. Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr₂O₃—SiO₂—Fe₂O₃—CaO—Al₂O₃—MgO—CuO // Computational Nanotechnology. 2024. Т. 11. № 2. С. 146–157. doi: 10.33693/2313-223X-2024-11-2-146-157. EDN: MWPEYI.
  12. Федоров М.В. Работа Келдыша Л.В. «Ионизация в поле сильной электромагнитной волны» и современная физика взаимодействия атомов с сильным лазерным полем» // ЖЭТФ. 2016. Т. 149. Вып. 3. С. 522–529.
  13. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313-223X-2023-10-3-26-34. EDN: QZQMCA.
  14. Saidov R.M., Rakhimov R.Kh., Touileb K. The effect of nanostructured functional ceramics additives on the properties of welding electrodes // Metals. 2023. Vol. 13 (11). No. 1849. 12 р. doi: 10.3390/met13111849.
  15. Saidov R., Rakhimov R., Touileb K., Abduraimov S. Study of the influence of additives of nanostructured functional ceramics in the coating of welding electrodes on their welding and technological properties // Engineering, Technology & Applied Science Research. 2024. Vol. 14. No. 6. Pp. 18711–18717. doi: 10.48084/etasr.8741.
  16. Saidov R., Rakhimov R., Touileb K. Joffin-J-Ponnore effects of nanostructured functional ceramics additives coatings electrode on the structure and mechanical properties of SMAW welded joints // Crystals. 2025. No. 15 (3). P. 1082. doi: 10.3390/cryst15030260.
  17. Saidov R., Rakhimov R., Touileb K. Сomparative analysis of the efficiency of additives of nanostructured functional ceramics on the properties of welding electrodes // Crystals. 2024. No. 14 (12). P. 1082.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Интерферометр Маха–Цендера

Скачать (132KB)


Ссылка на описание лицензии: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».