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AHHOTALMA

O6ocHoBaHMe. AfanTaumA HeMPOHHbIX CeTel MO3ra K MepeMeHHbIM YCIIOBUAM OKpYHKaloLLen cpedbl — KIYEBOM acrneKT
3Q(EKTMBHOr0 UCMONTHEHNA KOrHUTUBHBIX QYHKLMIA. CeTeBoM Noaxof B HeMpoHayKe, GOKYCUPYIOLLMIACA Ha aHanu3e CTPYK-
TYPHbIX ¥ QYHKLMOHANBHBIX XapaKTEPUCTUK CETEN, KOTOPbIE CBA3aHbI C KOrHUTMBHBIMM QYHKLIMAMM, ABNAETCA BECbMA MHO-
roobeLLaloLMM HanpaBneHneM ANA NOHMMAHWA NCUXODU3NONOTMYECKUX MEXaHWU3MOB, NEMALLMX B OCHOBE afanTUBHOM
AVHAMMKN KOTHUTUBHbIX MPOLLECCOB.

Lenb uccnepoBaHuA — M3yumnTb, KaK TOMONMOrMYecKMe 0COBEHHOCTM QYHKLMOHANbHBIX KOHHEKTOMOB M03ra YesioBeKa
CBA3aHbI C OCYLLLECTBNEHNEM Pa3fIMYHbIX KOTHUTUBHBIX npoLieccoB. OCHOBHOE BHUMaHUe Obino yaeneHo onpefeneHuio au-
HaMWYECKMX U3MEHEHMWIA B MO3rOBbIX CETAX BO BPEMA BbINOHEHUA 3aay Ha pabouyio NaMATb C LieNbio BbIABEHUA CETe-
BbIX XapPaKTEPUCTUK, NPUCYLLMX CETAM MPU UCMONHEHUMN 3TON KOTHUTUBHON QYHKLMK.

MeToabl. Ha ocHoBe 3anekTposHUedanorpagpuyeckux AaHHbIX NoAPOOHO PaccMOTPeHbI TOMOMOMUYECKUE XapaKTEPUCTUKM
(YHKUMOHANbHLIX MO3roBbIX CETEM B COCTOAHMM MOKOA W MPU KOTHUTWMBHOW Harpyske, 0b6ecrneymBaemMow BbiNOSHEHWEM
Tecta CTepHbepra Ha pabouylo namaTb (Sternberg ltem Recognition Paradigm). 3anucum 331 67 300poBbIX B3poCbIX Obiin
06paboTaHbl ANA OLEHKM (YHKLMOHANBbHOWM CBA3HOCTU C MOMOLLbI0 METOAA KOrepeHTHOCTU. Mbl npegnonaraeM, Yto To-
MoNOrMYeckMe CBOMCTBA (YHKLMOHANBHBIX CETEN B YENMOBEYECKOM MO3re pasfiMyaleTcA MeXay KOFHWUTWMBHOM HarpysKoi
1 COCTOAHMEM MNOKOSA C 60oJiee BLICOKOW MHTErpaLMen B CETAX BO BPEMA KOTHUTUBHOW Harpy3Kku.

Pesynbtartbl. lccnepoBaHve NoATBepKAAET, YTO TONOAOTMYECKME 0COBEHHOCTU (YHKLMOHAMbHBIX KOHHEKTOMOB 3aBUCAT
OT TEKYLLEro COCTOAHNA KOTHUTUBHOW 06paboTKM M M3MEHAIOTCA B OTBET Ha U3MEHEHWA KOTHUTUBHOW HarpysKM, Bbi3BaH-
HOW 3aflaHueM. AHanu3 TakKe NPOAEMOHCTPUPOBAN, YTO GYHKLMOHAMbHBIE KOHHEKTOMbI, 3aMKCMPOBaHHbIE MPU BbIMNO-
HeHMW 3afja4 Ha pabouylo nNaMATb, XapakTepu3yloTcA 6osiee HbICTPbIM MOABNEHWMEM reHepaTopoB rpynn roMonoruun. 3to
NoLTBEPHKAAET ML B3aMMOCBA3M MEM/Y HauanbHbIMM 3TanaMm BbINOHEHWS 3af4a4 Ha pabouyyio NaMATb U YBENMYEHWEM
CKOPOCTU CETEBOM MHTErpaLmMu, NPy 3TOM PeLLaIoLLYIo Pofib UFPaloT COeaMHUTENBHBIE Xabbl (connector hubs).
3aknioueHune. PaznnyHble ypoBHU KOTHUTUBHOW HarpysKK, B YacTHOCTM NPY 3aAadax Ha pabouyylo NaMATb, CBA3aHbI C pas-
HbIMW TOMONOTMYECKUMM CBOWCTBaMM (QYHKLIMOHANBHBIX CETEM MO3ra, YT0 MOSYEPKMBAET BarKHOCTb CETEBOW AMHAMUKK
B KOFHUTMBHOM 06paboTKe.
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Topological data analysis suggests human brain
network reconfiguration during the transition
from resting state to cognitive load
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ABSTRACT

BACKGROUND: Neural networks of the brain continually adapt to changing environmental demands. The network approach in
neuroscience, which focuses on the analysis of structural and functional network characteristics related to cognitive functions,
is a highly promising avenue for understanding the psychophysiological mechanisms underlying the adaptive dynamics of
cognitive processes.

AIM: We aimed to explore how the topological features of functional connectomes in the human brain are linked to different
cognitive demands. The focus was on understanding the dynamic changes in brain networks during working memory tasks to
identify network characteristics inherent to working memory.

METHODS: We examined the topological characteristics of functional brain networks in the resting state and cognitive
load provided by the execution of the Sternberg ltem Recognition Paradigm based on electroencephalographic data.
Electroencephalogram traces from 67 healthy adults were processed to estimate functional connectivity using the coherence
method. We propose that the topological properties of functional networks in the human brain are distinct between cognitive
load and resting state, with higher integration in the networks during cognitive load.

RESULTS: The topological features of functional connectomes depend on the current state of cognitive processing and change
with task-induced cognitive load variation. Moreover, functional connectivity during working memory tasks showed a faster
emergence of homology group generators, supporting the idea of a relationship between the initial stages of working memory
execution and an increase in faster network integration, with connector hubs playing a crucial role.

CONCLUSION: Collected evidence suggest that cognitive states, particularly those related to working memory, are associated
with distinct topological properties of functional brain networks, highlighting the importance of network dynamics in cognitive
processing.

Keywords: cognitive neuroscience; functional neuroimaging; brain electrical activity mapping; connectome mapping;
working memory.
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INTRODUCTION

Network neuroscience, an approach aimed at analyzing
the characteristics of structural and functional networks
associated with cognitive functions, is one of the most
promising ways of understanding the psychophysiological
mechanisms of cognition. The tremendous complexity of brain
neuronal structures, abundant with interconnections, renders
the relation of cognitive functions to the activity of separate
brain regions inefficient. It appears that interactions between
the brain loci are a better way of understanding the brain
mechanisms of cognition. Recently, a network approach that
depicts the brain as a network of interconnected regions has
become a popular method of brain activity analysis.

The widely used measure in functional network
studies is the level of global segregation and integration
in the network. Segregated networks are characterized
by a more distinguished structure of processing modules,
whereas the nodes of integrated networks are much more
interconnected. Functional segregation in the network is
characterized by higher modularity and clearly distinguishable
clusters of nodes in which the number of intracluster
connections significantly exceeds the number of intercluster
connections. The integrated network is characterized by low
modularity and a higher level of interconnection between all
network nodes (Fig. 1). The new computational methodology
has shown that the global topological properties of functional
brain networks have some unique features, such as small-
worldness, which implies a low path length and high
clustering, and provides an optimal ratio of the efficiency
of information processing and the costs of its transmission
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for brain networks [1]. In addition, convincing evidence
shows that brain neural networks are complementary
to global small-world architecture characteristics of
topological organization such as high clustering and high
global efficiency [2] and highly modular community structure
[3], which indicates a high number of nodes with multiple
connections — network hubs [4].

Increasing the level of integration within brain functional
networks is often associated with cognitive activity [5].
The level of integration in the network can directly predict
performance in cognitive tasks, including those for working
memory (WM), such as the N-back task.

By applying the methods of network neuroscience,
large amounts of data on the basic network architecture
of the human brain, particularly the cerebral cortex, were
collected. Neuroimaging studies have suggested that brain
activity is topologically organized by functional networks,
which are persistent in the cognitive load and resting states.
These networks are commonly referred to as intrinsic
connectivity networks (ICNs) [6], which denote functional
brain networks detected regardless of the current cognitive
load and separate them from resting state networks.
Evidence shows that the topology of these functional
networks is close to the anatomical neural topology of the
corresponding brain regions [7-9], and these networks
are associated with certain cognitive functions (e.g.,
networks of visual perception, long-term memory, cognitive
control, and attention [10]), supporting global information
processing and other aspects of cognition. Key features
of ICN organization in the human brain include the seven
most distinguished networks according to the study by Yeo

Small-word
network

Segregation Integration

Cost
< Efficiency

v

Fig. 1. Brain networks demonstrate a “small-world topology”, providing a balance between a regular network (leftmost), which promotes
local efficiency in exchange for low costs, and a random network (rightmost), which delivers global efficiency at high cost. As segregation
increases (right-to-left), the network is divided into modules, and its nodes are closely interconnected and poorly connected to the nodes
in other modules. As integration increases (left-to-right), the number of connections between nodes increases, and individual modules
merge into a single undifferentiated network. Rich clubs (yellow), formed by hubs of high centrality, provide global information pathways
in the network. Figure adapted from [6].

Puc. 1. Cetv Mo3ra ieMoOHCTpYpYIOT Tononoruio «TecHoro Mupar (“small-world topology”), obecneunBaiolLyto banaHc Meay perynfapHon
CeTblo (c/1e8a), KOTOPas CNoCobCTBYET NIOKaNbHOM 3PEKTUBHOCTM B 06MEH Ha HU3KMe 3aTpaTbl, U Cly4alHOM CeTblo (cnpasa), KoTopas
obecneumBaet rnobasnbHyio IGGEKTUBHOCTb NPY BLICOKUX 3aTpaTax. 1o Mepe yBenmueHus cerperaumm (cnpasa Hasmeso) CeTb JenuTca
Ha MOAY/W, Y3Mbl BHYTPW KOTOPbIX TECHO B3aMMOCBA3aHbI, HO Cllabo CBA3aHbI C y3naMu B Apyrux Mopynsax. Mo Mepe yBENUYEHWA UH-
Terpaumm (c1esa HaNPaso) KONMYECTBO COEAMHEHWIA MEMAY Y3NaMW YBENUYMBAETCA, U OTHENbHbIE MOAYNN 06bEAVHAKTCA B eAMHYI0
HeaudepeHLMpoBaHHyto ceTb. «boratbiit Knyb» (“Rich club”; nokasaH ENTbIM LBETOM), CO3[aHHbIN Y3/1aMU BbICOKOW LEHTPabHOCTH,
obecneumBaeT noaaepaHme adpGeRTUBHbIX rNo6anbHbIX MHPOPMALMOHHBIX MOTOKOB B CETW. PUCYHOK afanTupoBaH u3 [6].
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et al., where the more stable networks were distinguished
in functional magnetic resonance imaging data [11]. These
networks are roughly specified as visual, somatomotor,
dorsal attention, ventral attention, limbic, frontoparietal, and
default-mode networks. Although some of these networks
are suggested to aggregate multiple topologically and task-
specific subnetworks, research reveals that these networks
can be attributed to specific functions. Nevertheless, these
findings support the idea of topologically localized network
organization of brain neural activity.

According to modern conceptions of brain network
organization, the key elements of global brain networks
are the highly connected zones in the brain, which are
responsible for the transfer of information between
specialized ICNs. Such zones, or hubs, can be either local
(provincial hubs), connecting nearby nodes to a functional
local subnetwork, or global (connector hubs), through
which local subnets communicate with each other. Studies
have shown that global hubs form the “rich club” [12],
which includes approximately 70% of the shortest paths in
the neural networks of the brain, and is the most important
element ensuring the effective operation of the global
network [13]. The connection of the features of rich club
networks with cognitive functions lies in the fact that local
hubs, having many strong connections within their subnets,
ensure the transition of the network to easily accessible
states [14], in which internalized knowledge and experience
are available for processing by various means.

Working memory is a crucial cognitive function that
makes a significant contribution to an individual's cognition.
Encoding, storage, and retrieval of information from memory
are essential for various cognitive functions, including
speech, reasoning, perception, and motor activity [15].

The prefrontal cortex, particularly its dorsolateral part,
is considered to play a major role in the execution of WM.
The dorsolateral prefrontal cortex appears to be involved
in information storage, particularly regarding spatial
positioning, whereas various parts of the ventral and
lateral prefrontal cortices participate in storing nonspatial
information (e.g., objects, faces, and words). On the contrary,
each of these areas may have different functions, whereas
the dorsolateral prefrontal cortex is involved in manipulating
information, and the ventrolateral cortex is suggested to be
involved in its retention [16].

According to recent studies, during the WM task, brain
networks have some specific properties, particularly an
increase in the integration between the frontoparietal and
frontotemporal lobes, and an increase in reconfiguration
in the frontal regions is positively associated with
the performance of memorization [17]. The latest data
suggest that the execution of WM tasks leads to an increase
in segregation in functional brain networks compared with
the networks in the resting state. The significance of the role
of frontoparietal functional networks in WM performance is
validated by the considerable accuracy of prediction models
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based on the topological characteristics of functional
connectivity in these regions [18, 19]. In addition, Finc et al.
showed that training affects network segregation, induced
by WM tasks: after training, participants tend to have more
modularity in functional networks, whereas the performance
of the participants in WM tests also increases [20]. After
the training, the integration between task-positive systems
(frontoparietal, salience, dorsal attention, and cingulo-
opercular) increased, whereas the integration of the listed
ICNs with the default-mode network decreased.

Considering the abovementioned facts, we hypothesized
that the topological characteristics of the functional networks
of the human brain differ in WM tasks and resting state.
Furthermore, we assumed functional connectivity in the WM
load to demonstrate a more integrated organization with
a distinct rich club of highly connected hubs.

Aim — to investigate the relationship between
the topological features of functional connectomes in
the human brain and cognitive processing. We sought to
understand how the organization of functional networks
within the brain changes depending on the type of cognitive
task performed by the participants. One focus was on
studying the patterns of functional connectivity during WM
tasks, which are crucial for the temporary storage and
processing of information in the brain. By analyzing dynamic
changes in functional connectomes during different cognitive
tasks, potential associations were identified between specific
network characteristics and cognitive performance. This
investigation provides valuable insights into the underlying
mechanisms of cognitive processes, particularly in relation
to WM, and contributes to a deeper understanding of brain
functioning and its relevance to cognitive abilities.

MATERIALS AND METHODS

Participants

The study involved 67 people aged 18—34 years (m=21.7,
SD=3.36), 20 females and 47 males, all right-handed, with
no known injuries or neurological disorders.

Written consent was obtained from all the study
participants before the study screening in according to
the study protocol approved by the Bioethics Committee
of the Lomonosov Moscow State University (protocol N 8—ch
of 13.05.2021).

Working memory task procedure

The experiment involved 10-min recording of resting-
state brain activity at 2-min intervals with closed and open
eyes consecutively at 6 and 4 min of recording, respectively.
Then, the participants were offered a task on WM —
Sternberg item recognition paradigm (SIRP) [21]. In this
paradigm, participants were shown sets of characters
in the present study — a sequence of six digits (sample
stimulus), and after a certain delay, one character (control
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A Target stimulus

8 Non-target stimulus

Fig. 2. Scheme of the presentation of stimuli of the Sternberg Item Recognition Paradigm working memory task.
Puc. 2. Cxema npeabaBneHunsa ctuMynos Tecta CtepHbepra Ha pabouyio namaATb (Sternberg ltem Recognition Paradigm).

stimulus) was presented, and the participants had to

determine whether this character was a part of the original

set (Fig. 2). Each task comprised the following stages:

1. Presentation of a fixation cross in the center of the
screen (presented for 0.5 s).

2. Presentation of the sample stimulus (2 s).

3. Postponement with repeated presentations of the fixation
cross (2 s).

4. Presentation of the control stimulus — target or non-
target (0.5 s).

5. Time for the participant’s response with repeated
presentations of the fixation cross (1.5 s).
In total, 129 stimuli were presented to each participant.
PsychoPy version 2023.1.1 was used to program

the experiment, present stimuli to the participants, and

record behavioral data.

Neurophysiological data acquisition
and processing

Brain activity was recorded using the 64-channel
electroencephalographic (EEG) system actiCHamp (Brain
Products GmbH, Germany). The recording was performed in
the monopolar mode. The proprietary mounting of electrodes
by Brain Vision (USA) based on the 10-10 system was used,
with FCz as a reference electrode and AFz as a grounding
electrode. An electromyogram was recorded using an
electrooculography electrode placed under the right eye
to correct artifacts from the oculomotor musculature.
The frequency range of electrical signal registration was
0.1-1000.0 Hz.
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During preprocessing, EEG data were manually processed
to remove major artifacts. The recording sampling frequency
was then changed from 1000 to 250 Hz, the frequency range
was limited to 0 and 50 Hz, and the reference electrode was
changed from FCz to a virtual averaged reference. This
stage of the preprocessing procedure was performed using
BrainVision Analyzer 1.0 by Brain Products GmbH.

At the final stage of preprocessing, oculomotor and other
artifacts were removed by ICA, and damaged epochs and
channels were restored using the Autoreject Library for
Python [22].

Bioelectric signal sources were localized to more
accurately determine the features of the distribution of neural
electrical activity in the brain. The location of the sources was
determined using the “average” head and brain magnetic
resonance imaging model based on the “Buckner40” model.
The “oct6” scheme was used (4098 points per hemisphere;
the distance between sources was 4.9 mm, and the area for
each source was 24 mm?),

To calculate the forward operator using the boundary-
element model, areas with different conductivities were
divided into triangular geometric units. For EEG data,
three layers were used: the intracranial space, skull, and
scalp. After that, the boundary-element model layers were
assigned a conductivity value: for the scalp and parts of the
brain, the default value was 0.3 S/m; for the skull, the default
value was 0.006 S/m.

The activity of the sources was calculated using the dSPM
method [23]. The result of the algorithm is the assessment
of the activity of individual sources in the hemispheres
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(4098 per hemisphere), which were reduced to 75 zones in
each hemisphere using the PCA method. The value of the
first component was implemented. Zones in the brain cortex
were extracted according to the Destrieux anatomical atlas
[24]. Source localization procedures were performed using
the MNE-Python 1.3.1 package.

Preprocessed EEG traces were subjected to connectivity
estimation for each participant and condition (SIRP, closed
eyes and open eyes), and adjacency matrices were constructed
using the coherence method [25]. The connectivity for the entire
interval for each condition, including SIRP execution, was
estimated. This study focused on the evaluation of functional
connectome differences linked to different cognitive states,
not different levels of WM performance. Thus, no SIRP epochs
were dropped, including those that were recorded during
an unsuccessful trial of WM task execution. In this study,
we focused on the alpha (8-13 Hz) and beta (13-30 Hz)
frequency bands. EEG data were divided into 6-s epochs
with a 0.5-window overlap to capture temporal dynamics.
Coherence was calculated within each epoch and frequency
band and averaged first with every single SIRP stimulus.
Thereafter, coherence values were averaged across stimuli
within the same frequency band, and adjacency matrices were
constructed to represent functional connectivity.

At present, no consensus has been established on
the optimal value of the bond strength threshold for
constructing adjacency matrices, although this procedure
is an established part of the connectivity analysis process.
In recent studies of functional connectivity, authors more
often use fairly high values of the threshold of the strength
of connections, up to 0.80-0.95 [26, 27]. However, a high
threshold value can lead to the loss of a significant share
of information because weak functional connections in brain
networks can play an important role in the neural mechanisms
of cognitive functions [28]. In this study, a less conservative
threshold value of 0.7 was used. Functional connectivity was
estimated using the MNE-Python 1.3.1 package.

Topological data analysis

Topology is often colloquially described as representing
the overall structure of the data. In addition to more localized
and rigid geometric features, topological features are useful
for capturing global, multiscale, and intrinsic properties
of datasets. The usefulness of topological features has
been acknowledged with the emergence of topological
data analysis (TDA). Many researchers have attempted to
use this information to gain a new perspective on their
datasets. In recent years, an extension of TDA has emerged,
which involves integrating topological methods to enhance
traditional data analysis.

A fundamental assumption in data analysis is that data
possess a shape, meaning that they are sampled from an
underlying low-dimensional manifold, which is referred to
as the “manifold hypothesis” [29]. Instead of solely relying on
statistical descriptions, TDA seeks to explore the underlying
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manifold structure of datasets algebraically. This involves
computing descriptors of datasets that remain stable even
when subjected to perturbations, and these descriptors
encode intrinsic multiscale information about the data shape.

Data shape is a significant property, particularly in the field
of network science. Numerous studies have investigated
the topological structure of different biologically inspired
data, from structural [30] and functional connectomes to eye
movements [31] and single-cell activities. TDA techniques
have gained popularity in processing EEG signals because
they can aid researchers in discovering new properties
of complex and extensive data by simplifying the analysis
by implementing a geometrical approach.

Fundamental topological data analysis
definitions

Point clouds are a type of data representation in which
data elements are represented as an unordered set of points
in a Euclidean space with n dimensions, denoted as £”. A point
cloud refers to a finite subset of £". This type of data can be
obtained from many natural experiments and can even be
extracted from two-dimensional time series by disregarding
the order of elements. The overall topology of point clouds
can offer valuable insights into data structure.

The typical approach to transforming the data points in
a cloud {x} — E"into a single, unified topological object is to
use them as vertices in a combinatorial graph. To determine
the edges in the graph, an e-sized window of proximity is
defined such that points x; and x; are connected by an edge
if their distance p(x;, x)) is less than or equal to €. However,
this graph has a two-dimensional structure and cannot
adequately capture the high-dimensional properties of
the original space from which the data points were sampled.
To overcome this limitation, a mathematical object, known
as a clique complex, can be constructed on any graph object
using a specific method of creating a simplicial complex.
Each clique on n vertices in the graph is interpreted as an
(n—1)-dimensional combinatorial simplex. TDA methods
work directly with these discrete constructions; however,
their topological properties can be generalized to topological
simplices, which are the topological realizations of such
combinatorial simplices. Different methods of clique complex
construction are available, and the most commonly used and
useful ones are the Delaunay, Vietoris—Rips, Cech, and Alpha
complexes. These indices are defined as follows:

Cech Cech, (X) ={o=X | n Be(x) D}
Vietoris—Rips VR.(X) = {ocX | diam(o)<2¢}
Delaunay Del() =focX| 0V, =},

Ve={yeR?| | ly—x|I<]ly-z| | VzeX}
Alpha Alpha,(X) = focX | 0 (B(x)n V) =D}
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One of the main methods of TDA is persistent homology,
which considers the existence of an ordered pair (X, f) where
X is a set of data points and f is a filter function defined in
the domain of interest X. The filter function induces filtration
of the set X, i.e., a sequence of subspaces

@D = XXX ... X, = X,

which are often the sublevel sets X = f~!(-,€] of this
function for an arbitrary real valued threshold parameter
eeR. For example, assume that {VR}", is a sequence of VR
complexes associated with a point cloud X (data) for an
increasing sequence of parameter values {¢}",.

VR, = VR, > .. > IR,

where i is the inclusion maps between these complexes.
Persistent homology provides a tool for examining
homology not for a single complex VR; but for a whole
sequence of homology groups in each dimension * and for
all ixj

t: H*(VR) = H*(VR).

The dimensions of homology vector spaces named Betti
numbers B=dim(H* (X)) play the role of the most common
topological invariants in data analysis practice.

Persistent homology allows us to track and uncover
the emergence and disappearance of topological features
in various dimensions during filtration, where the threshold
parameter € changes from —e to +c. Persistent topological
features are those that persist over a long interval of the
threshold parameter, hence, the name “persistent”.
The persistence of a homology group element is measured as
the difference between the values of the filter function f at its
death and birth moments, denoted by d; and b, respectively.
In other words, it quantifies how long the homology group
element has existed and how important it is for the overall
topology of the space.

A concise method for summarizing information about
the lifespan of elements in homology groups of a particular
filtration is typically achieved using a “persistence diagram”
(PD). These diagrams are used for any given dimension k
the filtration and provide a compact representation of data
descriptors.

{Dkﬂ)()}ke(l]...K)’

which is called a k" dimensional PD
ka(X)5 = {(b,'yd,‘)}k,'ep

where {(b,d}._, is the multiset of birth-and-death
intervals of topological features in the dimension k.
An analogous way of thinking about PD is a multiset
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of points on the extended Euclidean plane R? U {+o} in
the birth-and-death coordinates.

To compare different PDs, different metrics, i.e.,
bottleneck and Wasserstein distances, are available.
Given the two PDs D and D', their bottleneck distance is
defined as

WM(D,D'): = infn:D—)D’supxeD ”X_n(x)“w

where n: D - [’ denotes a bijection between the point
sets of D and D" and ||||, refers to L distance between two
points in RZ.

The Wasserstein distance is a generalization of the
bottleneck metric and is defined as

W,(D,.0,): = fnfn:m—mz(xgm [x=nGAILA)™.

In this study, TDA was used to analyze the topological
structure of individual functional connectomes. Each
functional connectome was interpreted as a simplicial
complex; Vietoris—Rips complexes are mostly used in this
study, and PDs in zero, one, and two dimensions were
computed for each of them. Pairwise bottleneck distances
between Vietoris—Rips complexes were computed and used
to construct point clouds of the diagrams (Fig. 3). Finally,
point clouds were compared using representation topology
divergence (RTD), the topological measure of complex data
representations, such as point clouds, which have topological
and geometrical structures [32].

To vectorize PDs, different functions that represent
diagrams in vector form, for example, Betti curves, can
be used. Let D be a PD, then Betti curve in i dimension is
a function B R — N, from real numbers to natural numbers,
where B; (s) is the number, counted with multiplicity, of points
(b, d) in D such that b; < s < d. Betti curve values B, (s)
describe the i Betti number or the count of the independent
i-cycles in each graph after all cliques have been filled in or
i-dimensional “holes” (A 1-cycle bounds a 2D area, a 2-cycle
bounds a 3D volume, etc.).

All topological computations were performed using
the Python gudhi 3.8.0 package [33].

RESULTS

The times of birth and death of one- and two-dimensional
holes and connected components during the filtration process
provide significant information about the graph structure and
its possible functional roles. PDs correspond to two states
of similar cognitive activity levels: the resting states with
closed and open eyes form topologically and geometrically
equal point clouds in a two-dimensional space, with the RTD
distance between them equal to 9. By contrast, the distance
between point clouds formed by PDs corresponding to
different cognitive states drastically increases (for 25%) and
equals 11 (Fig. 4).
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Fig. 3. The left picture represents the combination of two persistence diagrams: D1 (blue) and D2 (red), and the dots correspond to
moments of the homology vector space basis elements death at specific filtration step €. The two right pictures represent the difference
between the information taken into account in Bottleneck and Wasserstein distances between diagrams.

Puc. 3. Ha pucyHKe cnesa npeficTaBfieHa KOMOMHaLMA ABYX NePCUCTEHTHBIX Anarpamm (persistence diagrams): 07 (cusum) u D2 (kpac-
HbIM), C TOYKAMW, COOTBETCTBYIOLUMMM MOMEHTaM r1benn 6asucHLIX BEKTOPOB MPOCTpaHCTBa roMoforuin. Ha aByx mpaBbix puCyHKax
0TO6OparKeHa pasHuLLA MexKy MHpOpMaLMeN, YYTEHHOM NPM pacyéTe pacCTOAHMIA BYTbINOYHOrO rophbilka (Bottleneck) n BaccepiuteiiHa

Mexay omarpaMmamu.
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Fig. 4. The left picture shows the resulting point clouds for each of the three functional states (SIRP, closed eyes and open eyes) and
clearly demonstrates the spatial discrepancy between persistence diagrams (points in the clouds), i.e., the cloud corresponding to
the SIRP functional state is located far from the resting state clouds (closed and open eyes functional states). The right picture shows
the matrix of pairwise distances (representation topology divergence metric [32]) between point clouds. Here: PCs, point clouds; PDs,
persistence diagrams; RTD, representation topology divergence; SIRP, Sternberg item recognition paradigm.

Puc. 4. Ha pucyHKe cneBa noKasaHbl pe3ynbTupyloLive obiaka ToYeK 1A Kawaoro U3 Tpex GyHKLMOHaMbHbIX cocToAHuM (SIRP, 3a-
KpbITble ra3a W OTKpbITbIE TNa3a) U HariAgHO AeMOHCTPUPYETCA MPOCTPAHCTBEHHOE HECOOTBETCTBUE MEMY MepCUCTEHTHBIMU Ana-
rpaMMaMm (ToukmM B obnakax), T.e. 06naKo, cooTBeTCTBYloLLee dYHKLMOHanbHOMy coctosHuio SIRP, pacnonorkeHo Aaneko oT o6akoB
COCTOAHUA NOKOA (C 3aKPbITHIMKA W OTKPbITHIMK FRa3amu). Ha npaBoM pucyHKe MOKasaHa MaTpyua MonapHbIX paccToAHMIA (MeTpUKa
Representation Topology Divergence [32]) Mexxay obnakamu Touek. 3geck: PCs — obnaka Touek; PDs — nepcucTeHTHble AnarpamMbl;
SIRP — Tect CrepHbepra; RTD — representation topology divergence metric.

In addition, the speed of two- and three-dimensional
hole deaths and appearance is significantly higher for

functional networks during SIRP. The
of connectomes during SIRP becomes

state networks only at the 20000 filtration step (Fig. 5). This

topological structure
equal to the resting-
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supports the reconfiguration hypothesis, which states that
functional networks of cognitively loaded tasks of solving
reconfigure faster.

Conversely, little difference was observed between
networks in the resting state with open or closed eyes.
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Fig. 5. Mean Betti curves for dimensions 1 and 2 averaged across all participants. The Y-axis corresponds to the Betti numbers of the
specific dimension: 1 or 2. The X-axis corresponds to the filtration steps for an increasing sequence of parameter values {e}";, where
N=60000. Here: sternberg, values for networks in Sternberg item recognition paradigm execution; closed eyes, values for networks
in the resting state with closed eyes; open eyes, values for networks in the resting state with open eyes; random network, values for

randomly generated networks of corresponding dimensions.

Puc. 5. CpegHue kpuBble bettv ana naMepenunit 1 1 2, KoTopble ycpeaHeHbl Mo BceM yyacTHUKaM. Ocb Y cooTBeTCTBYET Ynciam bettu
KOHKPETHOro U3MepeHmsa: 1 um 2; ocb X — Lwaram GunbTpaLmm Ais Bo3pacTaloLueil Noc/iedoBaTesbHoCTV 3HaueHni napametpos {e}",,
roe N=60000. 3peck: sternberg — 3HaueHnA anA ceteil npu BbinonHeHuu TecTa Ctepbepra; closed eyes — [nA cetei B COCTOAHMM
MOKOSA C 3aKPbITBIMY F1a3aMu; Open eyes — LA CETeN B COCTOAHUM MOKOA C OTKPbITbIMU Fnasamu; random network — ana cnyyanHo

CreHepmMpoBaHHbIX ceTen COOTBETCTBYIOLLUX pasMepoB.

The general topological structure is quite similar, i.e.,
the times of the birth and death of the topological features
do not differ during these states.

Real-world biological networks have significantly
distinguished clique topologies compared with random
networks [34]. If a correlation matrix is not random,
it can uncover the “geometric” structure of data and
indicate that neurons encode geometrically organized
stimuli. To test the statistical significance of the observed
topological properties, random distance matrices
on the same number of vertices were generated as
the number of vertices in the functional connectomes,
and their Betti curves with similar dimensions were
computed (See Fig. 5).

DISCUSSION

This study used a graph theory-driven approach to
examine the complex causality patterns derived from EEG
recordings. The aim of this study was to identify distinct
topological properties of neural networks associated
with the processing of information in WM and topological
features of resting-state networks, captured in close
vicinity of the moment of execution of the cognitive task.

DOl https://doiorg/10.23868/gc562843

This was elicited during visual SIRP performed in healthy
middle-aged adults.

Topological features, such as the time of birth of the
zeroth, first, and second homology group generators, i.e.,
network-connected components, one- and two-dimensional
holes, differ significantly depending on the current cognitive
state. Furthermore, analysis has shown that functional
connectivity in WM tasks demonstrates a higher speed
of homology group generator appearance, providing evidence
in favor of links between early phases of WM execution
and increased global integration in functional networks.
Moreover, because connector hubs are the nodes that
highly participated in global network interconnections, we
hypothesize that they contribute the most to the higher speed
of birth and death of homology groups. Thus, the described
topological properties can be linked with hub-based network
configuration in the cognitive load.

These findings suggest that TDA, performed on EEG-
derived functional connectivity, can represent the complexity
of functional networks underlying cognitive functions,
including WM, highlighting the peculiar properties of the
topological features of brain networks in the resting state
and selectivity to dynamics occurring during processing
of memory items.
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Networks in the resting state and cognitive
load

Our data suggest that the functional networks of
the human brain demonstrate a significantly distinct
topology depending on the current level of cognitive
load. Resting-state networks were constructed from data
acquired when participants had their eyes closed or open.
When a participant can visually inspect the surrounding
space while not experiencing any cognitive load, brain
activity changes and adapts in response to the need to
support neural processes of visual perception. These
changes express some whole-brain features, such as
the suppression of alpha-band EEG activity, which is linked
to preparatory visual attention [35]. From the perspective
of complex network analysis, resting-state brain activity
with open or closed eyes suggests differences in properties
connected to specific cognitive ability networks. According
to a previous study, the coordinated activity between
the cingulo-opercular and right-frontoparietal networks is
associated with visual processing, resulting in increased
integration in visual perception [36].

On the contrary, topological analysis, performed in
this study, showed a little difference between networks in
the resting state with open or closed eyes. We speculate that
the observed insensitivity of homology group generator death
reflects a stronger linkage of given network characteristics
to high-level information processing, which occurs during
dedicated problem solving, but not background perception
and processing.

Such results correlate with the predictions of the global
workspace theory [37], according to which, when accessing
the global workspace, the flow of information becomes
an object of conscious processing and is available for
conscious reporting and flexible behavior control. Moreover,
entering the workspace enhances this flow relative to
others, which are also inhibited. In many cognitive models,
the concept of a workspace is associated with arbitrary
attention and WM; therefore, the limits on the capacity
of the workspace correspond to the limits usually set for
focal attention or WM [38]. A dynamic model of workspace
formation was proposed; accordingly, the community
structure of locally synchronized modular subsystems for
unconscious processing can be functionally rearranged by
the launch of a globally synchronized system representing
a consciously processed stimulus [39]. Such dynamic
transitions from modular to global synchronization have
been demonstrated in computational models, including
those using data on the structure of anatomical networks
of humans or model animals [40]. Thus, as observed in
our study, the higher rapidity of birth of the zeroth and first
homology group generators in WM task execution may
reflect the abovementioned process of conscious processing
of information in the workspace, which occurs alongside
the suppression of other data flows.
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Features of the network topology in working
memory tasks

The human brain is a complex organ and can reorganize
and adapt in response to environmental changes. Collected
evidence suggests that ICNs are the functional basis
of cognitive functions, with specific global states related
to cognitive performance [41]. Our results support this
hypothesis, showing faster local network integration
during the processing of working tasks in contrast with
lesser early functional network integration in resting
states. The greater number of new connected components
in the functional connectome in the early stages of WM
task execution can be interpreted as a process of a faster
establishment of high-degree hubs in functional networks.
Thus, networks reconfigure faster to a topology with
a more expressed, highly connected core of the “rich club”.
Based on the asymmetrical distribution of the number
of connected components over time with a shift to the left,
we suggest that a greater number of new nodes are
included in the “rich club”, moving from the status of being
provincial hubs to being global hubs in the early stages
of information processing in WM. Such features of network
reconfiguration can indicate processes in the brain during
which certain ICNs are included in the global functional
network. The connection of topological changes with
the phase of information processing in WM suggests that
the described process is specific depending on the cognitive
function performed, which is consistent with the concept
of ICNs specific to various cognitive functions.

These findings correspond with those of recent network
neuroscience studies, suggesting that a more globally
integrated network with less specialized segregation may be
effective in sustaining WM [42]. The content of WM is defined
by the interaction between selective perceptual information
processing (such as visual or auditory information) operated
via selective attention and long-term memory representations
that are in a state of “accessibility” and require persistent
activity of specialized networks controlled by attentional
processes [43]. Therefore, a whole-brain network with high
global information transfer (integration) may better sustain
an optimal interplay between locally specialized networks,
as seen in the local organization of WM subnetworks.

CONCLUSION

This study used topological data analysis to analyze
electroencephalographic  recordings and identify
the topological properties of neural networks involved in
working memory processing. Sternberg item recognition
paradigm was performed in healthy middle-aged adults.
The study examined resting-state networks and connectivity
in cognitive load to understand topological features specific
to each state and the nature of network reconfiguration in
the transition between states.
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This study revealed a significant association between
the topological characteristics of functional connectomes and
the level of cognitive load undertaken by the participants.
During working memory tasks, the analysis indicated
a quicker emergence of homology group generators,
suggesting a connection between the execution of working
memory tasks and enhanced rapid integration of networks.

Overall, this study suggests that topological data
analysis can represent the complexity of functional networks
underlying cognitive functions, including working memory.
This study highlights the unique properties of topological
features of brain networks in the resting state and selectivity
to dynamics during the processing of memory items.
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