Calculation of transport and operational indicators of an improved flat-flow unit

封面

如何引用文章

全文:

详细

To implement an economically profitable initial and main timber rafting in raft units, the development of modern flat-raft units with high transport and operational performance is required. A highly efficient flat raft unit with a simple design and a high coefficient of raft section density is considered. The above advantages of a flat raft unit are formed due to the specific design of round timber laying in the rows of a flat unit, when each round timber of the upper row is stacked between two round timbers of the lower row with internal and external transverse gaskets. The use of the considered highly efficient flat-flow unit, regardless of its operating conditions, necessarily requires the correct calculation of its overall dimensions. The method to substantiate geometric parameters of the developed flat raft unit is proposed, where the emphasis is placed on determining the design and actual length, width and height of the raft unit. The geometric parameters of the flat raft unit were justified by taking into account the design features of the raft unit, the design of round timber laying in rows, the minimum width and depth of the floating road. The obtained dependences for calculating the design width, length and height of a flat raft unit allow the authors to determine the maximum possible overall dimensions of a flat unit. In turn, the obtained dependences for calculating the actual length, width and height of a flat raft unit are working formulas that take into account the maximum possible laying of round timber in a row and the number of stacked rows, and are used in calculating the overall dimensions of the manufactured flat raft unit for specific navigation conditions. The use of the proposed highly efficient flat-flow unit for the initial and main timber rafting will make it possible to ensure cost-effective delivery of wood to consumers from hard-to-reach places that lack a developed network of roads and railways.

作者简介

Vladimir Vasiliev

Federal state budget education institution of higher education «Voronezh state agrarian university named after emperor Peter the Great»

编辑信件的主要联系方式.
Email: vasiliev.vladimir87@mail.ru

Dmitry Afonichev

Federal state budget education institution of higher education «Voronezh state agrarian university named after emperor Peter the Great»

Email: dmafonichev@yandex.ru

参考

  1. Heinze M., Fiedler H. J. Water Consumption, Nutrition and Growth of Pine Seedlings under the Conditions of Different Radiation Intensity, Watering and Fertilization. Flora, 1980, vol. 169, is. 1, pp. 89—103. doi: https://doi.org/10.1016/S0367-2530(17)31167-2.
  2. Wagner R. G., Little K. M., Richardson B., Mcnabb K. The Role of Vegetation Management for Enchancing Productivity of the World’s Forests. Forestry, 2006, vol. 79, is. 1, pp. 57—79. doi: https://doi.org/10.1093/forestry/cpi057.
  3. Masaka K., Sato H., Torita H., Kon H., Fukuchi M. Thinning Effect on Height and Radial Growth of Pinus thunbergii Parlat. Trees with Special Reference to Trunk Slenderness in a Matured Coastal Forest in Hokkaido, Japan. Journal of Forest Research, 2013, vol. 18, is. 6, pp. 475—481. doi: 10.1007/s10310-012-0373-y.
  4. Ersson B. T., Jundén L., Bergsten U., Servin M. Simulated Productivity of One- and Two-Armed Tree Planting Machines. Silva Fennica, vol. 47, no. 2, art. 958. doi: 10.14214/sf.958.
  5. Hallongren H., Laine T., Rantala J., Saarinen V.-M., Strandström M., Hämäläinen J., Poikela A. Competitiveness of Mechanized Tree Planting in Finland. Scandinavian Journal of Forest Research, 2014, vol. 29, is. 2, pp. 144—151. doi: 10.1080/02827581.2014.881542.
  6. Nieuwenhuis M., Egan D. An Evaluation and Comparison of Mechanised and Manual Tree Planting on Afforestation and Reforestation Sites in Ireland. International Journal of Forest Engineering, 2002, vol. 13, is. 2, pp. 11—23. doi: 10.1080/14942119.2002.10702459.
  7. Rantala J., Laine T. Productivity of the M-Planter Tree-Planting Device in Practice. Silva Fennica, 2010, vol. 5, no. 44, pp. 859—869. doi: 10.14214/sf.125.
  8. Willoughby I., Jinks R. L., Kerr G., Gosling P. G. Factors Affecting the Success of Direct Seeding for Lowland Afforestation in the UK. Forestry, 2004, vol. 77, is. 5, pp. 467—482. doi: 10.1093/forestry/77.5.467.
  9. Hyytiäinen K., Ilomäki S., Mäkelä A., Kinnunen K. Economic Analysis of Stand Establishment for Scots Pine. Canadian Journal of Forest Research, 2006, vol. 36, no. 5, pp. 1179—1189. doi: 10.1139/x06-023.
  10. Patyakin V. I., Salminen E. O., Bit Yu. A., Birman A. R., Avdashkevich S. V., Bessarab G. A., Katsadze V. A., Grigoriev I. V., Kamusin A. A., Shelgunov Yu. V., Yartsev I. V. Forest exploitation. Textbook for students. higher. studies. Institutions. Moscow, Publishing center «Academy», 2006. 320 p. (In Russ).
  11. Shelgunov Yu. V., Sheinin Ya. G., Larionov L. A. Forest exploitation. Moscow, Lesn. prom-st, 1975. 304 p. (In Russ).
  12. Rukomojnikov K. P., Vedernikov S. V., Gabdrahmanov M. G. A Method for Delimbing Tree-Trunks and a Device for Applying the Method. Journal of Applied Engineering Science, 2018, vol. 16, no. 2, pp. 263—266. doi: https://doi.org/10.5937/jaes16-16442.
  13. Sennov S. V. Forestry and forestry. Textbook for students. Moscow, Publishing Center «Academy», 2005. 256 p. (In Russ).
  14. Ovchinnikov M. M., Polishchuk V. P., Grigoriev G. V. Forest transport. In 2 t. T. 2. Logging and ship transportation. Textbook for students. higher. studies. Moscow, Publishing Center «Academy», 2009. 208 p. (In Russ).
  15. Forest transport. In 2 t. T. 1. Land transport. Ed. by E. O. Salminen. Moscow, Publishing Center «Academy», 2009. 368 p. (In Russ.).
  16. Vasiliev V. V., Afonichev D. N. Improved systems of raft timber alloy: [monograph]. Saarbrucken (Germany), Publishing house LAP LAMBERT Academic Publishing, 2014. 284 p. (In Russ).
  17. Perfiliev P., Zadrauskaite N., Rybak G. Study of hydrodynamic resistance of a raft composed of the flat rafting units of various draft. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 18 (1.5). Austria, 2018, pp. 765—772.
  18. Wire Rope Industries Ltd., Pointe-Claire, Canada. Patent 5119529 USA, Int. CI.5 В63В 35/62. Cable hook. No. 703,844; filed: 21.05.1991; date application 09.06.1992.
  19. Patent 2882723 FR, Int. CI.8 В63В 35/00, 3/08, 7/02. Modular boat for the transport of logs by water. Applicant Roumengas Jonsa Guy; Agent SCHMITT. No. 0502132; the date of application 03.03.2005; the date of publication 21.10.2005, bulletin 06/36. 14 p.
  20. Skrypnikov A. V., Kozlov V. G., Zelikov V. A., Tikhomirov P. V., Levushkin D. M., Nikitin V. V., Sokol P. A. Feasibility study of geometrical parameters of wood transportation roads including prediction of optimum terms of construction and retrofitting sequence. Civil Engineering and Architecture, 2021, no. 9 (6), pp. 2077—2083. doi: 10.13189/cea.2021.090635.
  21. Nikitin V. V., Skrypnikov A. V., Kozlov V. G., Bryukhovetsky A. N., Manukovsky A. Y., Vysotskaya I. A., Sapelkin R. S. A linear model of the forest transport network and an algorithm for assessing the influence of the density of points and the length of links in developing multi-forested areas. International Journal of Engineering Trends and Technology, 2021, no. 69 (12), pp. 175—178. doi: 10.14445/22315381/IJETT-V69I12P220.
  22. Borovlev A. O., Skrypnikov A. V., Kozlov V. G., Teterevleva E. V., Burmistrov V. A., Mikheevskaya M. A., Chemshikova Y. M. Algorithm for determining the curvature of the project line of a truck haul road and the rate of change in its curvature. Civil Engineering and Architecture, 2021, no. 9 (5), pp. 1582—1589. doi: 10.13189/CEA.2021.090528.
  23. Ray Holden M., P. O. Box 716, Ketchikan, Alaska. Patent 3556319 USA, Int. CI. В63b 27/16. Log-bundling apparatus. No. 857,247; filed: 30.06.1969; date application 19.01.1971.
  24. Wilfred Spry Brodie, P. O. Box 175, Gibsons, British Columbia, VON 1VO, Canada. Patent 3971309 USA, Int. CI.2 В63В 27/16. Log bundling apparatus and method of bundling logs. No. 566,904; filed: 10.04.1975; date application 27.07.1976.
  25. Shevchenko Y. L., Eremichev V. N., Pochtar D. Yu., Syundyukov H. H. Machines and mechanisms for logging railways. Moscow, Goslesbumizdat, 1980. 144 p. (In Russ).
  26. Vasiliev V. V., Afonichev D. N. Substantiation of the indicator of the flexibility of a raft of raft units. Izvestiy vuzov. Lesnoi zhurnal, 2022, no. 4, pp. 146—155. doi: 10.37482/0536-1036-2022-4-146-155. (In Russ).
  27. Vasiliev V. V. Modernized raft for rivers with shallow depths. Vestnik PSTU. Series: Forest. Ecology. Environmental management PSTU, 2015, no. 1, pp. 45—58. (In Russ).
  28. Vasiliev V. V., Afonichev D. N. The use of flat splice units on the initial timber alloy. Izvestiy vuzov. Lesnoi zhurnal, 2022, no. 1, pp. 128—142. doi: 10.37482/0536-1036-2022-1-128-142. (In Russ).
  29. Vasiliev V. V., Afonichev D. N. Calculation of the strength of a flexible waterproof material of flat flat units with a stabilized buoyancy reserve. Resources and Technology, 2022, vol. 19, no. 2, pp. 77—102. doi: 10.15393/j2.art.2022.6203. (In Russ).
  30. Vasiliev V. V. Calculation of transport and operational indicators of an improved flat-flow unit. Resources and Technology, 2022, vol. 19, no. 4, pp. 1—22. doi: 10.15393/j2.art.2022.6365. (In Russ).
  31. Vasiliev V. V. Substantiation of the parameters of the transport and technological scheme for the supply of wood in flat raft units according to the raft (ruler) — raft principle. Resources and Technology, 2021, vol. 18, no. 2, pp. 48—78. doi: 10.15393/j2.art.2021.5603. (In Russ).
  32. Vasiliev V. V. Transport and technological scheme of wood supply by water transport in flat-flow units according to the principle of flat-flow unit — raft. Arctic: Innovative Technologies, Personnel, Tourism: Materials of International Scientific Practice. Online conferences. Voronezh, November 17—19, 2020. Voronezh: Voronezh State Forestry University named after G. F. Morozov, 2020, pp. 335—340. (In Russ).
  33. Vasiliev V. V., Aksenov I. I. Transport and technological scheme of timber supply to consumers in flat-flow units according to the principle of flat-flow unit — barge. Science and Education at the Present Stage of Development: Experience, Problems and Solutions: Materials of the International Scientific and Practical Conference. Voronezh, November 24—25, 2020. Voronezh: Voronezh State Agrarian University, 2020, pp. 30—33. (In Russ).
  34. Vasiliev V. V., Afonichev D. N., Morkovin V. A., Abramov V. V., Pozdnyakov E. V. Patent 210485 R. F., IPC B63B 35/62. Flat splice unit. Applicant and patent holder: Voronezh State Forestry University named after G. F. Morozov (RU). No. 2021125409; application 19.10.2020; publ. 18.04.2022, Byul. No. 11. 5 p. (In Russ).
  35. Vasiliev V. V., Afonichev D. N., Morkovin V. A., Abramov V. V., Pozdnyakov E. V. Patent 2777674 R. F., IPC B65B 35/02, B65G 69/20. Flat splice unit. Applicant and patent holder: Voronezh State Forestry University named after G. F. Morozov (RU). No. 2021140068; application 30.12.2021; publ. 08.08.2022, Byul. No. 22. 8 p. (In Russ).
  36. Vasiliev V. V., Afonichev D. N., Morkovin V. A., Pozdnyakov E. V. Patent 199681 R. F., IPC B65G 69/00, 57/18. Splotch machine. Applicant and patent holder: Voronezh State Forestry University named after G. F. Morozov (RU). No. 2020119839; application 08.06.2020; publ. 14.09.2020, Byul. No. 26. 5 p. (In Russ).
  37. Vasiliev V. V., Afonichev D. N., Loschenko A. V. Patent 213802 R. F., IPC B60P 3/41. Cargo platform. Applicant and patent holder: Voronezh State Agrarian University (RU). No. 2022123837; application 08.09.2022; publ. 29.09.2022, Byul. No. 28. 10 p. (In Russ).
  38. Vasiliev V. V., Afonichev D. N., Morkovin V. A., Abramov V. V., Pozdnyakov E. V. Patent 2777676 R. F., IPC B65B 35/02. Flat splice unit. Applicant and patent holder: Voronezh State Forestry Engineering University named after G. F. Morozov (RU). No. 2021140062; application 30.12.2021; publ. 08.08.2022, Byul. No. 22. 8 p. (In Russ).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Vasiliev V.V., Afonichev D.N., 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».