DEVELOPMENT OF A FOREST EARLY DETECTION SYSTEM FIRES USING UNMANNED AERIAL VEHICLES AND ARTIFICIAL INTELLIGENCE
- Авторлар: Vycherova N.R.1, Budevich E.A.1, Belyaev A.E.2
-
Мекемелер:
- Ukhta State Technical University
- Gazprom Nedra PF "Vuktylgazgeofizika" LLC
- Шығарылым: Том 19, № 4 (2022)
- Беттер: 85-101
- Бөлім: Articles
- URL: https://bakhtiniada.ru/2307-0048/article/view/356697
- DOI: https://doi.org/10.15393/j2.art.2022.6523
- ID: 356697
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Nataliya Vycherova
Ukhta State Technical University
Email: nvycherova@ugtu.net
Evgeny Budevich
Ukhta State Technical University
Email: ebudevich@ugtu.net
Andrey Belyaev
Gazprom Nedra PF "Vuktylgazgeofizika" LLC
Email: belandre@yandex.ru
Әдебиет тізімі
-
Анализ перспективных физических методов обнаружения возгораний / И. Р. Шегельман, О. Н. Галактионов, А. Ю. Когочев, А. С. Попов // Успехи современного естествознания. 2016. № 12. С. 335—339. Бобков А. В. Системы распознавания образов. М.: МГТУ им. Н. Э. Баумана, 2018. 190 с. Богуш Р. П., Тычко Д. А. Алгоритм комплексного обнаружения дыма и пламени на основе анализа данных систем видеонаблюдения // Доклады Белорусского государственного университета информатики и радиоэлектроники. 2015. № 6 (92). С. 63—71. Гибсон У. Распознавание образов. СПб.: Азбука, 2015. 384 с. Кириченко А. А. Основы теории искусственных нейронных сетей. Б. м., 2020. 222 с. URL: rusneb.ru. Текст: электронный. Красильников Н. Н. Цифровая обработка 2D- и 3D-изображений. СПб.: БХВ-Петербург, 2011. 608 с. Крюкова М. С., Фахми Ш. С. Сегментация полутоновых изображений лесных пожаровна основе дисперсионного анализа // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России: Научно-аналитический журнал. 2019. № 3. С. 103—111. Лесные пожары в России. «Антирекорды» и территории распространения // Информационное агентство России «ТАСС»: [сайт]. 2022. URL: https://tass.ru/info/15559017 (дата обращения: 05.09.2022). Лукьяница А. А., Шишкин А. Г. Цифровая обработка видеоизображений. М.: Ай-Эс-Эс Пресс, 2009. 518 с. Методы искусственного интеллекта в программных приложениях: Лабораторный практикум. Учебное электронное издание сетевого доступа / Б. Г. Ильясов, Е. А. Макарова, Е. Ш. Закиева, Э. Р. Габдуллина. Уфа, 2021. 153 с. URL: www.ugatu.su. Текст: электронный. Методы обработки и распознавания изображений лиц в задачах биометрии / Г. А. Кухарев, Н. Л. Щеголева, Ю. Н. Матвеев, Е. И. Каменская. М.: Политехника, 2013. 388 с. Никитин А. А., Лиманова Н. И. Процесс распознавания изображения нейронной сетью // Молодой учёный. 2020. № 47 (337). С. 23—25. URL: https://moluch.ru/archive/337/75420/ (дата обращения: 05.09.2022). Текст: электронный. Астратов О. С., Смирнов В. М., Филатов В. Н. Обнаружение лесных пожаровпо видеоизображениям // Научная сессия ГУАП: Сб. докл. СПб.: ГУАП, 2018. С. 7—11. Обработка изображений в прикладных телевизионных системах / О. С. Астратов [и др.]. СПб.: ГУАП, 2012. 272 с. Применение алгоритмов анализа изображений для обнаружения пожаров / А. О. Кузнецов, В. М. Мусалимов, А. П. Саенко, К. В. Трамбицкий // Известия высших учебных заведений. Приборостроение. 2012. Т. 55, № 6. С. 51—56. Пятаева А. В. Сегментация областей задымления на видеопоследовательности // Сибирский аэрокосмический журнал. 2016. Т. 17, № 3. С. 625—630. Система видеомониторинга для обнаружения лесного пожара в районе промышленного предприятия // О. С. Астратов, В. М. Смирнов, В. Н. Филатов, А. В. Митько // Neftegaz.RU: Деловой журнал. 2020. № 2 (98). С. 58—61. URL: https://magazine.neftegaz.ru/articles/tsifrovizatsiya/527122-sistema-videomonitoringa-dlya-obnaruzheniya-lesnogo-pozhara-v-rayone-promyshlennogo-predpriyatiya/ (дата обращения: 05.09.2022). Текст: электронный. Васюков В. Н., Зайцева А. Ю., Бондаренко В. В. Система раннего обнаружения лесных пожаров — архитектура и алгоритмы // Доклады АН ВШ РФ. 2015. № 2 (27). С. 43—56. Antoine C. Detection of forest fires using artificial intelligence. Année académique, 2021. 153 p. Artificial intelligence for forest fire prediction / G. Sakr, I. Elhajj, G. Mitri, U. Wejinya // Environmental Science, Computer Science 2010 IEEE. ASME International Conferenceon Advanced Intelligent Mechatronics. 2010. P. 1311—1316. Att squeeze u-net: A lightweight network for forest fire detection and recognition / J. Zhang, H. Zhu, P. Wang, X. Ling // IEEE Access, 9. 2021. P. 10858—10870. Early Forest Fire Detection Using Drones and Artificial Intelligence / D. Kinaneva, G. Hristov, J. Raychev, P. Zahariev // Conference: 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 2019. P. 1060—1065.
Қосымша файлдар


