Fuzzy modeling of disturbed lands natural revegetation

Cover Page

Cite item

Full Text

Abstract

The problem of disturbed lands recultivation is considered. Since no methodological approach has been developed, the primary task to be solved is to determine the desired period of time for lands natural revegetation. Agrotechnical revegetation measures effectiveness could be compared with the one of natural revegetation only if this task has been solved. The object of this research was the fund of mined disturbed lands in the Sverdlovsk region. All parameters of this object were characterized by data uncertainty conditions, therefore the main idea of the work was to use fuzzy logic, first to describe the main parameters affecting the revegetation process, and then to obtain a functional dependence of the output parameter, i.e. the recovery time period from these initial parameters. Thus, the goal of the research was to develop a fuzzy model of the process of natural revegetation of disturbed lands. The authors studied experimentally the disturbed lands state in a particular region; developed the problem statement; justified fuzzy membership functions of the problem; developed a base of rules for fuzzy products; obtained fuzzy inference and the resulting function; and developed software implementation of the task. The research results were software-implemented in the Scilab environment functional dependence of disturbed lands revegetation period on the type of soil, its parameters and the type of vegetation. The results might be applied to design agrotechnical, regulatory and other measures for disturbed lands revegetation.

About the authors

Vladimir Viktorovich Pobedinskiy

Ural State Forest Engineering University» (Russian Federation)FSBEE HE «Ural State Agrarian University

Email: pobed@e1.ru

Evgeniya Vasilevna Anyanova

Ural State Forestry University

Email: anyanovagv@m.usfeu.ru

Rudolf Nikolaevich Kovalev

Ural State Forest Engineering University» (Russian Federation)FSBEE HE «Ural State Agrarian University

Email: kovalevrn@m.usfeu.ru

Grigory Aleksandrovich Iovlev

Ural State Agrarian University

Email: gri-iovlev@yandex.ru

References

  1. Анянова Е. В. Применение метода системного анализа обработки информации для принятия решения при восстановлении нарушенных земель // Современные наукоёмкие технологии. 2019. № 10-2. С. 233—238.
  2. ГОСТ 25100-2020. МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ. ГРУНТЫ. Классификация. Дата введения 2021-01-01.
  3. Piegat A. Fuzzy Modeling and Control: with 96 tables. Heidelberg: New York, Physic-Verl, 2001. 760 р.
  4. Побединский В. В., Гороховский А. Г., Шишкина Е. Е., Побединский Е. В. Моделирование процесса сушки пиломатериалов // Лесной журнал. 2020. № 1. С. 154—166.doi: 10.37482/0536-1036-2020-1-154-166.
  5. Побединский В. В., Газизов А. М., Санников С. П., Побединский А. А. Диэлектрическая проницаемость лесного фонда в зависимости от параметров среды при радиочастотном мониторинге // Вестник Мордовского университета. 2018. Т. 28, № 2. С. 148—163.DOI: https://doi.org/ 10.15507/0236-2910.028.201802.148-163.
  6. Mamdani E. H. Application of fuzzy logic to approximate reasoning using linguistic synthesis // IEEE Transactions on Computers. 1977. Vol. 26, no. 12. р. 1182—1191.
  7. Hongyun Y., Junmin Li, Jiarong S., Yang W. Adaptive Fuzzy Tracking Control for Stochastic Nonlinear Systems with Time-Varying Input Delays Using the Quad-ratic Functions // International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-tems. 2018. Vol. 26, no. 01. р. 109—142.
  8. Gour A., Pardasani K. R. Statistical and Soft Fuzzy Set Based Analysis of Amino Acid Association Patterns in Peptide Sequence of Swine Influenza Virus // Advanced Science, Engineering and Medicine. 2018. Vol. 10, nо. 2. р. 137—144.
  9. Ntaganda J. M., Haggar M. S. D., Mampassi B. Fuzzy Logic Strategy for Solving an Optimal Control Problem of Therapeutic Hepatitis C Virus Dynamics // Open Journal of Applied Sciences. 2015. Vol. 5. р. 527—541.
  10. ESI Group — 2021. URL: http://scilab.io/company. Text. Image: electronic.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Pobedinskiy V.V., Anyanova E.V., Kovalev R.N., Iovlev G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».