Triggering of detonation processes in propulsion chamber
- Autores: Voronin D.V.1,2
-
Afiliações:
- M. A. Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Edição: Volume 14, Nº 2 (2021)
- Páginas: 40-45
- Seção: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/292049
- DOI: https://doi.org/10.30826/CE21140204
- ID: 292049
Citar
Resumo
The Navier–Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.
Palavras-chave
Sobre autores
D. Voronin
M. A. Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Autor responsável pela correspondência
Email: voron@hydro.nsc.ru
Doctor of Science in physics and mathematics, senior reserch scientist; professor
RússiaBibliografia
- Voitsekhovskii, B.V. 1959. Statsionarnaya detonatsiya [Stationary detonation]. Dokl. Akad. Nauk SSSR 129(6):1254– 1256.
- Bykovskii, F. A., and S.A. Zhdan. 2013. Nepreryvnaya spinovaya detonatsiya [Continuous spin detonation]. Novosibirsk: Siberian Branch of the Russian Academy of Sciences Publs. 423 p.
- Frolov, S. M., V. S. Ivanov, I. O. Shamshin, V. S. Aksenov, M. Yu. Vovk, I. V. Mokrynskij, V. A. Bruskov, D. V. Igonkin, S. N. Moskvitin, A. A. Illarionov, and E. Yu. Marchukov. 2020. A detonation afterburner. Dokl. Phys. 65(1):36–39. doi: 10.1134/S1028335820010061.
- Vargaftik, N. B. 1972. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook on thermophysical properties of gases and liquids]. 2nd ed. Moscow: Nauka. 721 p.
- Voronin, D. V. 2017. Gas self-ignition in a plane vortex chamber. Combust. Explo. Shock Waves 53(5):510–516.
- Voronin, D. V. 2018. Triggering detonation in an annular flow chamber. Combust. Explo. Shock Waves 54(3):364–369.
- Belotserkovskiy, O. M., and Yu. M. Davydov. 1982. Metod krupnykh chastits v gazovoy dinamike [Method of large particles in gasdynamics]. Moscow: Nauka. 370 p.
Arquivos suplementares
