Параметры нелинейных моделей грунта для расчета напряженно-деформированного состояния каменно-набросной плотины

Обложка

Цитировать

Полный текст

Аннотация

Введение. Расчеты напряженно-деформированного состояния (НДС) грунтовых плотин I и II классов ответственности требуется выполнять с использованием нелинейных моделей грунта. К числу таких моделей относятся модель упрочняющегося грунта (модель HS) и модель Кулона – Мора (модель MC). Актуальной задачей является определение параметров этих моделей для крупнообломочных грунтов: щебенистого и гравийно-галечникового.Материалы и методы. Параметры модели HS для крупнообломочных грунтов определялись путем обработки результатов трехосных испытаний, которые представлены в зарубежных публикациях. Параметры модели MC устанавливались из условия приближенного соответствия НДС высокой плотины (высотой 100 м), получаемого с использованием двух моделей. Напряженно-деформированное состояние плотины выявлялось с помощью численного моделирования в программном комплексе PLAXIS 2D.Результаты. Подобраны параметры модели HS, которые позволяют удовлетворительно описать деформирование грунта при девиаторном нагружении, заметные отклонения проявляются только в величинах объемных деформаций. Сравнение показало, что щебенистый грунт, результаты испытаний которого использованы для определения параметров моделей, соответствует хорошо уплотненному грунту современных каменно-набросных плотин. При выборе параметров модели MC, эквивалентных модели HS, выполнялся контроль результатов численного моделирования каменно-набросной плотины как по деформациям, так и по напряженному состоянию. При формировании НДС плотины отчетливо проявляется эффект «упрочнения» грунта — на этапе восприятия гидростатического давления деформируемость грунта резко снижается по сравнению с этапом нагрузок от собственного веса. Поэтому параметры модели MC целесообразно подбирать отдельно для двух этапов нагружения плотины.Выводы. Модель HS в целом дает возможность отразить нелинейные деформирования крупнообломочных грунтов, однако она не учитывает криволинейный характер предельной поверхности и не может одновременно отразить явления контракции и дилатансии. Использование модели MC не позволяет адекватно воспроизвести НДС каменно-набросной плотины, подобранные параметры модели MC могут быть использованы лишь для приближенных расчетов.

Об авторах

Ф. В. Котов

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: KotovFV@mgsu.ru

М. П. Саинов

Национальный исследовательский университет «МЭИ» (НИУ «МЭИ»)

Email: SainovMP@mpei.ru
ORCID iD: 0000-0003-1139-3164
SPIN-код: 2369-9626

Список литературы

  1. Andjelkovic V., Pavlovic N., Lazarevic Z., Radovanovic S. Modelling of shear strength of rockfills used for the construction of rockfill dams // Soils and Foundations. 2018. Vol. 58. Issue 4. Pp. 881–893. doi: 10.1016/j.sandf.2018.04.002
  2. Marsal R.J. Large scale testing of rockfill materials // Journal of the Soil Mechanics and Foundations Division. 1967. Vol. 93. Issue 2. Рр. 27–43. doi: 10.1061/jsfeaq.0000958
  3. Araei A.A., Soroush A., Tabatabaei S.H., Ghalandarzadeh A. Consolidated undrained behavior of gravelly materials // Scientia Iranica. 2012. Vol. 19. Issue 6. Рр. 1391–1410. doi: 10.1016/j.scient.2012.09.011
  4. Ghanbari A., Hamidi A., Abdolahzadeh N. A study of the rockfill material behavior in large-scale tests // Civil Engineering Infrastructures Journal. 2013. Vol. 46. Issue 2. Рр. 125–143. doi: 10.7508/ceij.2013.02.002
  5. Honkanadavar N.P., Sharma K.G. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials // International Journal of Geomechanics. 2014. Vol. 14. Issue 6. doi: 10.1061/(ASCE)GM.1943-5622.0000378
  6. Xiao Y., Liu H., Chen Y., Jiang J. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure // Journal of Geotechnical and Geoenvironmental Engineering. 2014. Vol. 140. Issue 12. doi: 10.1061/(ASCE)GT.1943-5606.0001176
  7. Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests // International Journal of Geomechanics. 2017. Vol. 17. Issue 10. doi: 10.1061/(ASCE)GM.1943-5622.0000977
  8. Pan J., Jiang J., Cheng Z., Xu H., Zuo Y. Large-scale true triaxial test on stress-strain and strength properties of rockfill // International Journal of Geomechanics. 2020. Vol. 20. Issue 1. doi: 10.1061/(ASCE)GM.1943-5622.0001527
  9. Саинов М.П. Деформируемость горной массы в теле каменно-набросных плотин // Строительство: наука и образование. 2019. Т. 9. № 3 (33). С. 5. doi: 10.22227/2305-5502.2019.3.5. EDN GBNXDO.
  10. Pramthawee P., Jongpradist P., Kongkitkul W. Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams // Songklanakarin Journal of Science and Technology. 2011. Vol. 33. Issue 3. Рр. 325–334.
  11. Yao F.H., Guan S.H., Yang H., Chen Y., Qiu H.F., Ma G. et al. Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm // Water Science and Engineering. 2019. Vol. 12. Issue 3. Рр. 196–204. doi: 10.1016/j.wse.2019.09.004
  12. Qu P., Chai J., Xu Z. Three-dimensional static and dynamic analyses of an embedded concrete-face rockfill dam // Water. 2023. Vol. 15. Issue 23. P. 4189. doi: 10.3390/w15234189
  13. Gao J., Han X., Han W., Dang F., Ren J., Xue H. et al. Research on the slip deformation characteristics and improvement measures of concrete-faced rockfill dams on dam foundations with large dip angles // Scientific Reports. 2024. Vol. 14. Issue 1. doi: 10.1038/s41598-024-59222-0
  14. Özkuzukiran S., Özkan M.Y., Özyazicioglu W.M., Yildiz G.S. Settlement behaviour of a concrete faced rock-fill dam // Geotechnical & Geological Engineering. 2006. Vol. 24. Issue 6. Рр. 1665–1678. doi: 10.1007/s10706-005-5180-1
  15. Gao Y., Liu H., Won M.S. Behavior of rockfill dam under complex terrain condition // Arabian Journal of Geosciences. 2020. Vol. 13. Issue 19. doi: 10.1007/s12517-020-06040-z
  16. Sukkarak R., Likitlersuang S., Jongpradist P., Jamsawang P. Strength and stiffness parameters for hardening soil model of rockfill materials // Soils and Foundations. 2021. Vol. 61. Issue 6. Рр. 1597–1614. doi: 10.1016/j.sandf.2021.09.007
  17. Andrian F., Ulrich N., Monkachi M. Numerical analysis of the 210 m-High Nam Ngum 3 CFRD // Lecture Notes in Civil Engineering. 2020. Рр. 749–762. doi: 10.1007/978-3-030-51085-5_41
  18. Sukkarak R., Jongpradist P., Pramthawee P. A modified valley shape factor for the estimation of rockfill dam settlement // Computers and Geotechnics. 2019. Vol. 108. Рр. 244–256. doi: 10.1016/j.compgeo.2019.01.001
  19. Сорока В.Б., Саинов М.П., Королев Д.В. Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния // Вестник МГСУ. 2019. Т. 14. № 2. С. 207–224. doi: 10.22227/1997-0935.2019.2.207-224
  20. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Рр. 749–771. doi: 10.1680/jgeot.17.p.095
  21. Саинов М.П., Котов Ф.В. Параметры модели упрочняющегося грунта для моделирования высоких грунтовых плотин // Вестник науки и образования Северо-Запада России. 2024. Т. 10. № 2. С. 56–67. EDN FJGMOI.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».