Changes in the lipid composition of Peltigera canina at an elevated temperature
- 作者: Valitova J.N.1, Khabibrakhmanova V.R.1,2, Gurianov O.P.1, Uvaeva V.L.1, Khairullina A.F.1, Rakhmatullina D.F.1, Galeeva E.I.1, Trifonova T.V.1, Viktorova L.V.1, Minibayeva F.V.1
-
隶属关系:
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
- Kazan National Research Technological University
- 期: 卷 13, 编号 4 (2023)
- 页面: 532-544
- 栏目: Physico-chemical biology
- URL: https://bakhtiniada.ru/2227-2925/article/view/301378
- DOI: https://doi.org/10.21285/2227-2925-2023-13-4-532-544
- EDN: https://elibrary.ru/UISMLE
- ID: 301378
如何引用文章
全文:
详细
作者简介
J. Valitova
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: yulavalitova@mail.ru
V. Khabibrakhmanova
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS; Kazan National Research Technological University
Email: venerakhabirakhmanova@gmail.com
O. Gurianov
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: gurjanov58@gmail.com
V. Uvaeva
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: vernicapux99@gmail.com
A. Khairullina
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: a16280110@gmail.com
D. Rakhmatullina
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: rdf137@mail.ru
E. Galeeva
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: kgu@mail.ru
T. Trifonova
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: TrifonovaTatyana@yandex.ru
L. Viktorova
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: lar-viktorova@yandex.ru
F. Minibayeva
Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre RAS
Email: fminibayeva@gmail.com
参考
- Beckett R.P., Kranner I., Minibayeva F.V. Stress physiology and the symbiosis // Lichen biology / ed. T.H. Nash III. Cambridge: Cambridge University Press, 2008. P. 134–151.
- Chen K., Wei J.-C. Heat tolerance of the mycobionts and phycobionts from three desert lichens // Mycosystema. 2015. Vol. 34, no. 5. P. 1007–1014. doi: 10.13346/j.mycosystema.140074.
- Beckett R.P., Minibayeva F.V., Vylegzhanina N.N. Tolpysheva T. High rates of extracellular superoxide production by lichens in the suborder Peltigerineae correlate with indices of high metabolic activity // Plant, Cell and Environment. 2003. Vol. 26, no. 11. P. 1827–1837. doi: 10.1046/j.1365-3040.2003.01099.x.
- Bolwell G.P., Bindschedler L.V., Blee K.A., Butt V.S., Davies D.R., Gardner S.L., et al. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system // Journal of Experimental Botany. 2002. Vol. 53, no. 372. P. 1367–1376. doi: 10.1093/jexbot/53.372.1367.
- Веселова С.В., Нужная Т.В., Бурханова Г.Ф., Румянцев С.Д., Максимов И.В. Влияние этилена на содержание активных форм цитокининов в листьях пшеницы, инфицированных различными по вирулентности штаммами гриба Stagonospora nodorum Berk. // Экобиотех. 2020. Т. 3. N 1. С. 91–101. doi: 10.31163/2618964X-2020-3-1-91-101. EDN: NFQZQP.
- Bindschedler L.V., Minibaeva F., Gardner S.L., Gerrish C., Davies D.R., Bolwell G.P. Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+ // New Phytologist. 2001. Vol. 151, no. 1. P. 185–194. doi: 10.1046/j.1469-8137.2001.00170.x.
- Gomez-Toribio V., Garcia-Martin A.B., Martinez M.J., Martinez A.T., Guillen F. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal // Applied and Environmental Microbiology. 2009. Vol. 75, no. 12. P. 3954–3962. doi: 10.1128/AEM.02138-08.
- Kumar G.N.M., Knowles N.R. Changes in lipid peroxidation and lipolitic and free radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers // Plant Physiology. 1993. Vol. 102, no. 1. P. 115–124. doi: 10.1104/pp.102.1.115.
- Часов А.В., Минибаева Ф.В. Методические подходы к исследованию редокс-активности апопласта. 2. Регуляция активности пероксидаз // Физиология растений. 2014. Т. 61. N 5. С. 668–675. doi: 10.7868/S0015330314050042. EDN: SHLPKN.
- Hildebrandt A.G., Roots I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reaction in liver microsomes // Archives of Biochemistry and Biophysics. 1975. Vol. 171, no. 2. P. 385–397. doi: 10.1016/0003-9861(75)90047-8.
- Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Canadian Journal of Biochemistry and Physiology. 1959. Vol. 37, no. 8. P. 911–917. doi: 10.1139/o59-099.
- Дымова О.В., Кузиванова О.А. Оптимизация способа экстракции фотосинтетических пигментов и их содержание в талломах лишайников // Химия растительного сырья. 2018. N 2. С. 137–144. doi: 10.14258/jcprm.2018023013. EDN: XQIGXB.
- Oukarroum А., Schansker G., Strasser R.J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance // Physiologia Plantarum. 2009. Vol. 137, no. 2. P. 188–199. doi: 10.1111/j.1399-3054.2009.01273.x.
- Lange O.L., Green T.G.A., Heber U. Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? // Journal of Experimental Botany. 2001. Vol. 52, no. 363. P. 2033–2042. doi: 10.1093/jexbot/52.363.2033.
- Дембицкий В.М. Толстиков Г.А. Органические метаболиты лишайников: монография. Новосибирск: Гео, 2005. 134 c.
- Валитова Ю.Н., Хабибрахманова В.Р., Уваева В.Л., Рахматуллина Д.Ф., Галеева Е.И., Трифонова Т.В.. Изменение липидного состава лишайника Peltigera canina при действии неблагоприятных температур // Устойчивость растений и микроорганизмов к неблагоприятным факторам среды: труды VI Всерос. науч. конф. с междунар. уч. (пос. Большое Голоустное, 3–7 июля 2023 г.). Иркутск, 2023. С. 25. EDN: ALUYDK.
- Kuziel S. Influence of sulphur dioxide on chloro-phyll content and catalase activity in some chosen lichen species // Acta Societatis Botanicorum Poloniae. 1974. Vol. 43, no. 4. P. 453–457. doi: 10.5586/asbp.1974.041.
- Moyo C.E., Beckett R.P., Trifonova T.V., Minibayeva F.V. Extracellular redox cycling and hydroxyl radical production occurs widely in lichenized Ascomycetes // Fungal Biology. 2017. Vol. 121, no. 6-7. P. 582–588. doi: 10.1016/j.funbio.2017.03.005.
- Gumming J.R., Taylor G.J. Mechanisms of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm // Stress responses in plants: adaptation and acclimation mechanisms / eds R.G. Alcher, J.R. Gumming. New York: Wiley-Liss, 1990. P. 329–356.
- Мерзляк М.Н. Физиология растений. Т. 6. Акти-вированный кислород и окислительные процессы в мембранах растительной клетки. М.: Изд-во ВИНИТИ АН СССР, 1989. 166 с.
- Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiological. Reviews. 1994. Vol. 74, no. 1. P. 139–162. doi: 10.1152/physrev.1994.74.1.139.
- Hell A.F., Gasulla F., Gonzalez-Hourcade M., del Campo E.M., Centeno D.C., Casano L.M. Tolerance to cyclic desiccation in lichen microalgae is related to habitat preference and involves specific priming of the antioxidant system // Plant and Cell Physiology. 2019. Vol. 60, no. 8. P. 1880–1891. doi: 10.1093/pcp/pcz103.
- Mesa T., Munné-Bosch S. α-Tocopherol in chloroplasts: nothing more than an antioxidant? // Current Opinion in Plant Biology. 2023. Vol. 74. P. 102400. doi: 10.1016/j.pbi.2023.102400.
- Fukuzawa K., Fujii T. Peroxide dependent and independent lipid peroxidation: site-specific mechanisms of initiation by chelated iron and inhibition by a-tocopherol // Lipids. 1992. Vol. 27, no. 3. P. 227–233. doi: 10.1007/BF02536183.
- Wang X., Quinn P.J. Vitamin E and its function in membranes // Progress in Lipid Research. 1999. Vol. 38, no. 4. P. 309–336. doi: 10.1016/S0163-7827(99)00008-9.
- DaSilva E.J., Englund B. Occurrence of tocopherol and ergosterol in Swedish lichens // Lichenologist. 1974. Vol. 6, no. 1. P. 96–99. doi: 10.1017/S0024282974000053.
- Dasilva E.J., Jensen A. Choline, ergosterol and tocopherol content of some Norwegian lichens // Journal of the Science of Food and Agriculture. 1971. Vol. 22, no. 6. P. 308–311. doi: 10.1002/jsfa.2740220611.
- Britton G. Carotenoid research: history and new perspectives for chemistry in biological systems // Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids. 2020. Vol. 1865, no. 11. P. 158699. doi: 10.1016/j.bbalip.2020.158699.
- Palozza P., Krinsky N.I. Antioxidant effect of carotenoids in vivo and in vitro: an overview // Methods in enzymology. Vol. 213. Carotenoids (Part A. Chemistry, separation, quantitation, and antioxidation) / ed. L. Packer. San Diego: Academic Press, 1992. P. 403–420.
- Kennedy T.A., Leibler D.C. Peroxyl radical scav-enging by β-carotene in lipid bilayers: effect of oxygen partial pressure // Journal of Biological Chemistry. 1992. Vol. 267, no. 7. P. 4658–4663.
- Böhm F., Edge R., McGarvey D.J., Truscott T.G. β-Carotene with vitamins E and С offers synergistic cell protection against NOx // FEBS Letters. 1998. Vol. 436, no. 3. P. 387–389. doi: 10.1016/S0014-5793(98)01173-9.
- Гомбоева С.Б., Гесслер Н.Н., Шумаев К.Б., Хомич Т.И., Мойсеенок А.Г., Быховский В.Я. Некоторые природные и синтетические антиоксиданты как стабилизаторы превращения β-каротина в витамин А // Биохимия. 1998. Т. 63. N 2. С. 224–229.
- Muzzopappa F., Kirilovsky D. Changing color for photoprotection: the orange carotenoid protein // Trends in Plant Science. 2020. Vol. 25, no 1. P. 92–104 doi: 10.1016/j.tplants.2019.09.013.
- Kobayashi M., Kakizono Т., Nishio N., Nagai S., Kurimura Y., Tsuji Y. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis // Applied Microbiology and Biotechnology. 1997. Vol. 48. P. 351–356. doi: 10.1007/s002530051061.
补充文件
