Исследование влияния экстрактов микроводорослей на гемопоэз и иммунитет
- Авторы: Лыков А.П.1,2, Уваров И.П.3, Геворгиз Р.Г.4, Железнова С.Н.4, Повещенко О.В.1
-
Учреждения:
- Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал Института цитологии и генетики СО РАН
- Новосибирский научно-исследовательский институт туберкулеза Минздрава РФ
- Управление ветеринарии города Новосибирска
- Институт биологии южных морей им. А. О. Ковалевского РАН
- Выпуск: Том 12, № 1 (2022)
- Страницы: 109-120
- Раздел: Физико-химическая биология
- URL: https://bakhtiniada.ru/2227-2925/article/view/301122
- DOI: https://doi.org/10.21285/2227-2925-2022-12-1-109-120
- ID: 301122
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
А. П. Лыков
Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал Института цитологии и генетики СО РАН; Новосибирский научно-исследовательский институт туберкулеза Минздрава РФ
Email: aplykov2@mail.ru
И. П. Уваров
Управление ветеринарии города Новосибирска
Email: 79139206791@mail.ru
Р. Г. Геворгиз
Институт биологии южных морей им. А. О. Ковалевского РАН
Email: r.gevorgiz@yandex.ru
С. Н. Железнова
Институт биологии южных морей им. А. О. Ковалевского РАН
Email: zheleznovasveta@yandex.ru
О. В. Повещенко
Научно-исследовательский институт клинической и экспериментальной лимфологии – филиал Института цитологии и генетики СО РАН
Email: poveschenkoov@yandex.ru
Список литературы
- Tabarzad M., Atabaki V., Hosseinabadi T. Anti-inflammatory activity of bioactive compounds from microalgae and cyanobacteria by focusing on the mechanisms of action // Molecular Biology Reports. 2020. Vol. 47, no. 8. P. 6193–6205. https://doi.org/1 0.1007/s11033-020-05562-9.
- Lauritano C., Helland K., Riccio G., Andersen J. H., Ianora A., Hansen E. H. Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity // Marine Drugs. 2020. Vol. 18, no. 3. P. 166. https://doi.org/10.3390/md18030166.
- Frumento D., Aliakbarian B., Casazza A. A., Converti A., Al Arni S., da Silva M. F. Chlorella vulgaris as a lipid source: cultivation on air and seawater-simulating medium in a helicoidal photobioreactor // Biotechnology Progress. 2016. Vol. 32, no. 2. P. 279–284. https://doi.org/10.1002/btpr.2218.
- Lupatini A. L., Colla L. M., Canan C., Colla E. Potential application of microalga Spirulina platensis as a protein source // Journal of the Science of Food and Agriculture. 2017. Vol. 97, no. 3. P. 724–732. https://doi.org/10.1002/jsfa.7987.
- Cheng D., Wan Z., Zhang X., Li J., Li H., Wang C. Dietary Chlorella vulgaris ameliorates altered immunomodulatory functions in cyclophosphamide-induced immunosuppressive mice // Nutrients. 2017. Vol. 9, no. 7. P. 708. https://doi.org/10.3390/nu9070708.
- Khan S., Mobashar M., Mahsood F. K., Javaid S., Abdel-Wareth A. A., Ammanullah H., et al. Spirulina inclusion levels in a broiler ration: evaluation of growth performance, gut integrity, and immunity // Tropical Animal Health and Production. 2020. Vol. 52, no. 6. P. 3233–3240. https://doi. org/10.1007/s11250-020-02349-9.
- Abdel-Aziem S. H., Abd El-Kader H. A. M., Ibrahim F. M., Sharaf H. A., El Makawy A. I. Evaluation of the alleviative role of Chlorella vulgaris and Spirulina platensis extract against ovarian dysfunctions induced by monosodium glutamate in mice // Journal of Genetic Engineering and Biotechnology. 2018. Vol. 16, no. 2. P. 653–660. https://doi.org/ 10.1016/j.jgeb.2018.05.001.
- Neumann U., Derwenskus F., Gille A., Louis S., Schmid-Staiger U., Briviba K., et al. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice // Nutrients. 2018. Vol. 10, no. 8. P. 965. https://doi.org/10.33 90/nu10080965.
- Blinkova L. P., Gorobets O. B., Baturo A. P. Biological activity of spirulina // Journal of Microbiology, Epidemiology and Immunobiology. 2001. Vol. 2. P. 114–118.
- Abdelnour S. A., Sheiha A. M., Taha A. E., Swelum A. A., Alarifi S., Alkahtani S., et al. Impacts of enriching growing rabbit diets with Chlorella vulgaris microalgae on growth, blood variables, carcass traits, immunological and antioxidant indices // Animals (Basel). 2019. Vol. 9, no. 10. P. 788. https:// doi.org/10.3390/ani9100788.
- Queiroz M. L. S., da Rocha M. C., Torello C. O., de Souza Queiroz J., Bincoletto C., Morgano M. A., et al. Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice // Food and Chemical Toxicology. 2011. Vol. 49, no. 11. P. 2934–2941. https://doi.org/10.1016/j.fct.2011.06.056.
- Souza Queiroz J., Barbosa C. M. V., da Rocha M. C., Bincoletto C., Paredes-Gamero E. J., de Souza Queiroz M. L., et al. Chlorella vulgaris treatment ameliorates the suppressive effects of single and repeated stressors on hematopoiesis // Brain, Behavior, and Immunity. 2013. Vol. 29. P. 39–50. https://doi.org/10.1016/j.bbi.2012.12.001. 13. Zhang H. Q., Lin A. P., Sun Y., Deng Y. M. Chemo- and radio-protective effects of polysaccharide of Spirulina platensis on hemopoietic system of mice and dogs // Acta Pharmacologica Sinica. 2001. Vol. 22, no. 12. P. 1121–1124.
- Yu W., Wen G., Lin H., Yang Y., Huang X., Zhou C., et al. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of Coral trout Plectropomus leopardus (Lacepede, 1802) // Fish & Shellfish Immunology. 2018. Vol. 74. P. 649– 655. https://doi.org/10.1016/j.fsi.2018.01.024.
- Bechelli J., Coppage M., Rosell K., Liesveld J. Cytotoxicity of algae extracts on normal and malignant cells // Leukemia Research and Treatment. 2011. https://doi.org/10.4061/2011/373519. 1
- Wu X., Liu Z., Liu Y., Yang Y., Shi F., Cheong K. L., et al. Immunostimulatory effects of polysaccharides from Spirulina platensis in vivo and vitro and their activation mechanism on RAW246.7 macrophages // Marine Drugs. 2020. Vol. 18, no. 11.P. 538. https://doi.org/10.3390/md18110538.
- Ngo-Matip M.-E., Pieme C. A., AzabjiKenfack M., Moukette B. M., Korosky E., Stefanini P., et al. Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial // Nutrition Journal. 2015. Vol. 14. Article number 70. https://doi.org/1 0.1186/s12937-015-0058-4.
- Hasegawa T., Yoshikai Y., Okuda M., Nomoto K. Accelerated restoration of the leukocyte number and augmented resistance against Escherichia coli in cyclophosphamide-treated rats orally administered with a hot water extract of Chlorella vulgaris // International Journal of Immunopharmacology. 1990. Vol. 12, no. 8. P. 883–891. https://doi. org/10.1016/0192-0561(90)90007-a.
- Kavitha M. D., Gouda K. G. M., Aditya Rao S. J., Shilpa T. S., Shetty N. P., Sarada R. Atheroprotective effect of novel peptides from Porphyridium purpureum in RAW 264.7 macrophage cell line and its molecular docking study // Biotechnology Letters. 2019. Vol. 41, no. 1. P. 91–106. https://doi.org/10. 1007/s10529-018-2621-5.
- Lauritano C., Helland K., Riccio G., Andersen J. H., Ianora A., Hansen E. H. Lysophosphatidylcholines and chlorophyll-derived molecules from the Diatom Cylindrotheca closterium with antiinflammatory activity // Marine Drugs. 2020. Vol. 18, no. 3. P. 166. https://doi.org/10.3390/md18030166.
Дополнительные файлы
