Effects of Bacillus thuringiensis 0271 on individual indicators of nonspecific resistance of Origanum vulgare L. to stressful conditions

Cover Page

Cite item

Full Text

Abstract

In this paper, we aim to study the effect of the Bacillus thuriengiensis strain var. darmstadiensis 0271 on the biochemical parameters of Origanum vulgare L., which determine its nonspecific resistance to unfavourable environmental conditions. The research materials were a liquid spore culture of B. Thuringiensis 0271 and the following oregano samples: 100.1 with 75.5% of carvacrol, g-4with 52.0% of carvacrol, No. 2 with 59.85% of а-terpineol, No. 1 with 21.5% of germacrene D and 19.4% of в-caryophyllene. The preservation of the strain spores on the leaf surface of Origanum vulgare was determined using A.G. Kolchevskys method. The proline content was determined by V.A. Khramov’s and E.M. Ageeva’s method, while the pigment content was measured spectrophotometrically. The total content of phenolic compounds, ascorbic acid and water-soluble carbohydrates was established according to the methods by M.N. Zaprometov, M.M. Okuntsov and M. Dubois, respectively. Ten days after treating the leaves of the 100.1 and No. 1 oregano varieties with the spore culture of B. Thuringiensis 0271, the amount of chlorophylls decreased by 27.1 and 15.2% compared to the control, respectively. At the same time, the amount of chlorophylls increased by 91.4 and 72.7% in the leaves of the g-4and No. 2 varieties, respectively. On the 10th day of the experiment, the amount of proline and phenolic compounds decreased by 4 times in the leaves of the g-4 sample. Compared to the control, the 100.1 variety demonstrated a decrease in the amount of soluble carbohydrates and phenolic compounds by 1.76 and 2.0 times, respectively. On the 10th day of the experiment, the treatment of O. vulgare plants with B. Thuringiensis 0271 promoted the accumulation of antioxidants in the leaves of the g-4sample by 14.5% compared to the control.

About the authors

A. V. Kryzhko

Research Institute of Agriculture of Crimea

Email: solanum@ukr.net

U. M. Budzhurova

Research Institute of Agriculture of Crimea

Email: ubudzhurova@mail.ru

References

  1. Vokou D., Kokkini S., Bessiere J.M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils // Biochemical Systematics and Ecology. 1993. Vol. 21. Issue 2. P. 287-295.
  2. Adam K., Sviropoulou A., Kokkini S., Lanaras T., Arsenakis M. Antifungal activities of Origanum vul-gare subsp. hirtum, Mentha spicata, Lavandula an-gustifolia and Salvia fructinosa essential oils against human pathogenic fungi // Journal of Agricultural and Food Chemistry. 1998. Vol. 46. Issue 5. P. 17391745.
  3. Yoshino K., Higashi N., Koga K. Antioxidant and antiinflammatory activities of oregano extract // Journal of Health Science. 2006. Vol. 52. Issue 2. P. 169-173. https://doi.org/10.1248/jhs.52.169
  4. Cosge B., Turker A., Ipek I., Gurbuz B. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to Turkey // Molecules. 2009. Vol. 14. Issue 5. P. 1702-1712. https://doi.org/10.3390/molecules14051702
  5. Bakkali F., Averbeck S., Averbeck C., Idaomar M. Biological effects of essential oils - A review // Food and Chemical Toxicology. 2008. Vol. 46. Issue 2. P. 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  6. Habibi E., Shokrzadeh M., Chabra A., Naghshvar F., Keshavarz-Maleki R., Ahmadi A. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice // Pharmaceutical Biology. 2015. Vol. 53. Issue 1. P. 10-15. https://doi.org/10.3109/13880209.2014.908399
  7. Mohamed N.A., Nassier O.A. The antihypergly-caemic effect of the aqueous extract of Origanium vul-gare leaves in streptozotocin-induced diabetic rats // Jordan Journal of Biological Sciences. 2013. Vol. 6. Issue 1. P. 31-38.
  8. Vujicic M., Nikolic I., Kontogianni V.G., Saksida T., Charisiadis P., Orescanin-Dusic Z., et al. Methanolic extract of Origanum vulgare ameliorates type 1 diabetes through antioxidant, anti-inflammatory and antiapoptotic activity // British Journal of Nutrition. 2015. Vol. 113. Issue 5. P. 770-782. https://doi.org/10.1017/S0007114514004048
  9. Chuang L.-T., Tsai T.-H., Lien T.-J., Huang W.C., Liu J.-J., Chang H., et al. Ethanolic extract of Origanum vulgare suppresses Propionibacterium acnes-induced inflammatory responses in human monocyte and mouse ear edema models // Molecules. 2018. Vol. 23. Issue 8. P. 1987. https://doi.org/10.3390/molecu-les23081987
  10. Ren H., Qin X., Huang B., Fernandez-Garcia V., Lv C. Responses of soil enzyme activities and plant growth in a eucalyptus seedling plantation amended with bacterial fertilizers // Archives of Microbiology. 2020. Vol. 202. Issue 6. P.1381-1396. https://doi.org/10.1007/s00203-020-01849-4
  11. Mushtaq T., Shah A.A., Akram W., Yasin N.A. Synergistic ameliorative effect of iron oxide nanoparticles and Bacillus subtilis S4 against arsenic toxicity in Cucurbita moschata: polyamines, antioxidants, and physiochemical studies // International Journal of Phytoremediation. 2020. Vol. 22. Issue 13. P. 1408-1419. https://doi.org/10.1080/15226514.2020.1781052
  12. Mahmood F., Shahid M., Hussain S., Haider M.Z., Shahzad T., Ahmed T., et al. Bacillus firmus strain FSS2C ameliorated oxidative stress in wheat plants induced by azo dye (reactive black-5) // 3 Biotech. 2020. Vol. 10. Issue 2. P. 40. https://doi.org/10.1007/s13205-019-2031-y
  13. Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.-M., Kim K.-M., et al. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application // PLoS ONE. 2020. Vol. 15. Issue 4. https://doi.org/10.1371/journal.pone.0232228
  14. Yoo S.-J., Weon H.-Y., Song J., Sang M.K. Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants // Journal of Microbiology and Biotechnology. 2019. Vol. 29. Issue 7. P. 1124-1136. https://doi.org/10.4014/jmb.1904.04026
  15. Saad M.M.G., Kandil M., Mohammed Y.M.M. Isolation and Identification of Plant Growth-Promoting Bacteria Highly Effective in Suppressing Root Rot in Fava Beans // Current Microbiology. 2020. Vol. 77. Issue 9. P. 2155-2165. https://doi.org/10.1007/s00284-020-02015-1
  16. Shreya D., Jinal H.N., Kartik V.P., Amaresan N. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress // Archives of Microbiology. 2020. Vol. 202. Issue 4. P. 887-894. https://doi.org/10.1007/s00203-019-01801-1
  17. Raddadi N., Cherif A., Ouzari H.I., Marzora-ti M., Brusetti L., Boudabous A., et al. Bacillus thurin-giensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains // Annals of Microbiology. 2007. Vol. 57. Issue 4. P. 481-494. https://doi.org/10.1007/bf03175344
  18. Makonde H.M., Lenga F.K., Masiga D., Mu-go S., Boga H.I. Effects of Bacillus thuringiensis CRY1A(c) d-endotoxin on growth, nodulation and productivity of beans// African Journal of Biotechnology. 2010. Vol. 9. Issue 1. P. 017-024.
  19. Azizoglu U. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt // Current Microbiology. 2019. Vol. 76. Issue 11. P. 1379-1385. https://doi.org/10.1007/s00284-019-01705-9
  20. Белоусова М.Е., Гришечкина С.Д., Ермолова В.П., Антонец К.С., Марданов А.В., Ракитин А.Л.. Секвенирование генома штамма B. thuriengiensisvar. darmstadiensis 56 и изучение инсектицидной активности биологического препарата на его основе // Сельскохозяйственная биология. 2020. Т. 55. N 1. С. 87-96. https://doi.org/10.15389/agrobiology.2020.1.87rus
  21. Bejaoui A., Chaabane H., Jemli M., Boulila A., Boussaid M. Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages // Journal of Medicinal Food. 2013. Vol. 16. Issue 12. P. 1115-1120. https://doi.org/10.1089/jmf.2013.0079
  22. Rodriguez-Garcia I., Silva-Espinoza B.A., Ortega-Ramirez L.A., Leyva J.M., Siddiqui M.W., Cruz-Valenzuela M.R., et al. Oregano essential oil as an antimicrobial and antioxidant additive in food products // Critical Reviews in Food Science and Nutrition. 2016. Vol. 56. Issue 10. P. 1717-1727. https://doi.org/10.1080/10408398.2013.800832
  23. Putievsky E., Ravid U., Husain S.Z. Differences in the yield of plant material, essential oils and their main components during the life cycle of Origanum vulgare L. // Proseedings of the International Symposium on Essential Oils “Essential oils and aromatic plants” (1984, Noordwijkerhout, Netherlands). Noordwijkerhout, 1984. P. 185-189.
  24. Храмов В.А., Агеева Е.М. Колориметрические методы определения содержания свободного пролина и аминоазота в покоящихся семенах пшеницы и их аналитическая активность // Сельскохозяйственная биология.1986. N 10. С. 122-124.
  25. Халафян А.А. Современные статистические методы медицинских исследований: монография. М.: Ленард, 2014. 320 с.
  26. Taylor W., Camilleri E., Craft D.L., Korza G., Granados M.R., Peterson J., et al. DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation // Applied and Environmental Microbiology. 2020. Vol. 86. Issue 8. P. e03039-19 (14 p.)
  27. Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator // Antioxidants. 2020. Vol. 9. Issue 8. P. 681. https://doi.org/10.3390/antiox9080681

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».