Synthesis of phase-change material Ge2Sb2Te5 nanoparticles by laser-induced forward transfer techniques

封面

如何引用文章

全文:

详细

Experimental results on the synthesis of nanoparticles of Ge2Sb2Te5 phase-change material by the direct laser-induced transfer method are presented. Thin films obtained by the thermal vacuum deposition were used as a donor material and silicon wafers as an acceptor. The laser-induced forward transfer was carried out using the sub-nanosecond pulsed laser irradiation. The morphology, topology, and size of the obtained nanoparticles were analyzed by scanning electron microscopy. Structural studies were performed by Raman scattering. A quasi-uniform distribution of nanoparticles on the substrate and a quasi-uniform size distribution were achieved. It was shown that it is possible to achieve a nanoparticle diameter of less than 100 nm. Raman spectra show that the nanoparticles obtained are in the crystalline state. The results show the possibility of creating an element based on nanoparticles with a specific distribution in size as a technological alternative to devices based on thin films. The use of nanoparticles will make it possible to achieve the energy efficiency, greater flexibility, and smoothness of switching as well as to realize neuromorphic and stochastic computation.

作者简介

Anton Burtsev

National Research Centre «Kurchatov Institute»

Email: murrkiss2009@yandex.ru
Researcher

Vladimir Mikhalevsky

National Research Centre «Kurchatov Institute»

Researcher

Alexey Nevzorov

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Alexey Kiselev

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Maria Konnikova

National Research Centre «Kurchatov Institute»

Junior Researcher

Vitaly Ionin

National Research Centre «Kurchatov Institute»

Researcher

Nikolay Eliseev

National Research Centre «Kurchatov Institute»

Junior Researcher

Andrey Lotin

National Research Centre «Kurchatov Institute»

Ph. D., Deputy Head of the branch

参考

  1. Phase change materials: science and applications / ed. by S. Raoux, M. Wutting. - New York: Springer Science+Business Media, LLC, 2009. - 450 p. doi: 10.1007/978-0-387-84874-7.
  2. Kolobov, A.V. Chalcogenides: metastability and phase change phenomena / A.V. Kolobov, J. Tominaga. - Berlin, Heidelberg: Springer-Verlag, 2012. - XVI+284 p. doi: 10.1007/978-3-642-28705-3.
  3. Козюхин, С.А. Материалы фазовой памяти и их применение / С.А. Козюхин, П.И. Лазаренко, А.И. Попов, И.Л. Еременко //Успехи химии. - 2022. - Т. 91. - Вып. 9. - Статья № RCR5033. - 39 с. doi: 10.1070/RCR5033.
  4. Ovshinsky, S.R. Reversible electrical switching phenomena in disordered structures / S.R. Ovshinsky //Physical Review Letters. - 1968. - V. 21. - I. 20. - P. 1450-1453. doi: 10.1103/PhysRevLett.21.1450.
  5. Feinleib, J. Rapid reversible light-induced crystallization of amorphous semiconductors /j. Feinleib, J. deNeufville, S.C. Moss, S.R. Ovshinsky // Applied Physics Letters. - 1971. - V. 18. - I. 6. - P. 254-257. doi: 10.1063/1.1653653.
  6. Yamada, N. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory / N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao // Journal of Applied Physics. - 1991. - V. 69. - I. 5. - P. 2849-2856. doi: 10.1063/1.348620.
  7. Wuttig, M. Phase-change materials for rewriteable data storage / M. Wuttig, N. Yamada // Nature Materials. - 2010. - V. 6. - I. 11. - P. 824-832. doi: 10.1038/nmat2009.
  8. Sarwat, S.G. Materials science and engineering of phase change random access memory / S.G. Sarwat // Materials Science and Technology. - 2017. - V. 33. - I. 16. - P. 1890-1906. doi: 10.1080/02670836.2017.1341723.
  9. Papandreou, N. Multilevel phase-change memory / N. Papandreou, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam, H. Pozidis, E. Eleftheriou //2010 17th IEEE International Conference on Electronics, Circuits and Systems, 12-15 December 2010, Athens. - New York: IEEE Publ., 2010. P. 1017-1020. doi: 10.1109/ICECS.2010.5724687.
  10. Guo, P. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators / P. Guo, A.M. Sarangan, I. Agha // Applied sciences. - 2019. - V. 9. - I. 3. - Art. № 530. - 26 p. doi: 10.3390/app9030530.
  11. Wuttig, M. The science and technology of phase change materials / M. Wuttig, S. Raoux // Zeitschrift für anorganische und allgemeine Chemie. - 2012. - V. 638. - I. 15. - P. 2455-2465. doi: 10.1002/zaac.201200448.
  12. Zhang, W. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing/ W. Zhang, R. Mazzarello, M. Wuttig, E. Ma // Nature Reviews Materials. - 2019. - V. 4. - I. 3. - P. 150-168. doi: 10.1038/s41578-018-0076-x.
  13. Суздалев, И.П. Электрические и магнитные переходы в нанокластерах и наноструктурах / И.П. Суздалев. - М.: URSS, 2016. - 480 с.
  14. Суздалев, И.П. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов / И.П. Суздалев. - М.: URSS, 2017. - 592 с.
  15. Casarin, B. Ultralow-fluence single-shot optical crystalline-to-amorphous phase transition in Ge-Sb-Te nanoparticles / B. Casarin, A. Caretta, B. Chen, et al. // Nanoscale. - 2018. - V. 10. - I. 35. - P. 16574-16580. doi: 10.1039/c8nr04350g.
  16. Caretta, A. Ultrafast response of Ge2Sb2Te5 nanoparticles: The benefits of low energy amorphization switching with the same read/write speed of bulk memories / A. Caretta, B. Casarin, B. Chen et al. //APL Materials. - 2023. - V. 11. - Art. № 071117. - P. 071117-1-071117-5. doi: 10.1063/5.0156207.
  17. Arachchige, I.U. Amorphous and crystalline GeTe nanocrystals / I.U. Arachchige, R. Soriano, C.D. Malliakas et al. // Advanced Functional Materials. - 2011. - V. 21. - I. 14. - P. 2737-2743. doi: 10.1002/adfm.201100633.
  18. Morales, M. Laser-induced forward transfer techniques and applications / M. Morales, D. Munoz-Martin, A. Marquez, et al. // Advances in Laser Materials Processing; 2nd ed. Technology, Research and Applications Woodhead Publishing Series in Welding and Other Joining Technologies. - Coventry: Woodhead Publishing, 2018. - Ch. 13. - P. 339-379. doi: 10.1016/B978-0-08-101252-9.00013-3.
  19. Kiselev, А.V. Dynamics of reversible optical properties switching of Ge2Sb2Te5 thin films at laser-induced phase transitions / A.V. Kiselev, V.V. Ionin, A.A. Burtsev, et al. // Optics & Laser Technology. - 2022. - V. 147. - Art. № 107701. - 6 p. doi: 10.1016/j.optlastec.2021.107701.
  20. Burtsev, A.A. Physical properties' temperature dynamics of GeTe, Ge2Sb2Te5 and Ge2Sb2Se4Te1 phase change materials / A.A. Burtsev, N.N. Eliseev, V.A. Mikhalevsky et al. // Materials Science in Semiconductor Processing. - 2022. - V. 150. - Art. № 106907. - 8 p. doi: 10.1016/j.mssp.2022.106907.
  21. Zhu, Z. Raman study on the crystallization characteristics of amorphous Ge2Sb2Te5 film / Z. Zhu, F.R. Liu, Y.N. Huang // Applied Mechanics and Materials. - 2014. - V. 541-542. - P. 229-233. doi: 10.4028/ href='www.scientific.net/AMM.541-542.229' target='_blank'>www.scientific.net/AMM.541-542.229.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».