Formation of hybrid carriers based on albumin and polyoxometalate for targeted drug delivery

Capa

Citar

Texto integral

Resumo

The use of proteins to create the targeted drug delivery systems is a promising approach in medicine and has many advantages. The formation of hybrid drug carriers based on proteins and polyoxometalates has a number of additional benefits. Polyoxometalates are able to bind both proteins and molecules of certain drugs to obtain water-soluble products without the use of toxic reagents and organic solvents. The regulation of the experimental conditions allows to control the size of the particles formed in solution. The gradual destruction of polyoxometalate { Mo72Fe30 } at blood pH provides a pH -dependent mechanism for drug release from the carrier structure. In our research, we obtained bovine serum albumin associated with coordination complexes { Mo72Fe30 }-doxorubicin and { Mo72Fe30 }-tetracycline in aqueous solution. A decrease in the rate of the drug release in a phosphate buffer solution at pH 7.4 (blood pH ) from the obtained materials compared to systems not containing albumin was observed. The data obtained in this study shed light on the formation patterns of multicomponent supramolecular systems, consisting of polyoxometalates, proteins, and drugs. The results indicate the possibility of creating hybrid carriers for targeted drug delivery based on polyoxometalates and albumin using non-covalent binding.

Sobre autores

Margarita Tonkushina

Ural Federal University

Ph. D., Senior Researcher, Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematics

Ilya Gagarin

Ural Federal University

Ph. D., Junior Researcher, Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematics

Barah Sharadgah

Ural Federal University

2nd postgraduate student, Department of Medical Biochemistry and Biophysics

Vitaliy Gavrilyuk

Ural Federal University

4th year student, Department of Fundamental and Applied Physics

Konstantin Piunov

Ural Federal University

4th year student, Department of Fundamental and Applied Physics

Alexander Ostroushko

Ural Federal University

Email: alexander.ostroushko@urfu.ru
Dr. Sc., Professor, Head of Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematics

Bibliografia

  1. Yetisgin, A.A. Therapeutic nanoparticles and their targeted delivery applications / A.A. Yetisgin, S. Cetinel, M. Zuvin et al. // Molecules. - 2020. - V. 25. - I. 9. - Art. № 2193. - 31 p. doi: 10.3390/molecules25092193.
  2. Drug delivery systems: methods in molecular biology / ed. K. K. Jain. - New York: Humana New York, 2020. - XI, 316 p. doi: 10.1007/978-1-4939-9798-5.
  3. Korolev, D. The Combination of solid-state chemistry and medicinal chemistry as the basis for the synthesis of theranostics platforms / D. Korolev, V. Postnov, I. Aleksandrov, I. Murin // Biomolecules. - 2021. - V. 11. - I. 10. - Art. № 1544. 22 p. doi: 10.3390/biom11101544.
  4. Baki, A. Albumin-coated single-core iron oxide nanoparticles for enhanced molecular magnetic imaging (MRI/MPI) / A. Baki, A. Remmo, N. Löwa et al. // International Journal of Molecular Sciences. - 2021. - V. 22. - I. 12. - Art. № 6235. - 19 p. doi: 10.3390/ijms22126235.
  5. Kummitha, C.M. Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles / C.M. Kummitha, A.S. Malamas, Z.-R. Lu // International Journal of Nanomedicine. - 2012. - V. 7. - P. 5205-5214. doi: 10.2147/IJN.S34288.
  6. Mirshafiee, V. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake / V. Mirshafiee, R. Kim, S. Park et al. // Biomaterials. - 2016. - V. 75. - P. 295-304. doi: 10.1016/j.biomaterials.2015.10.019.
  7. Peng, Q. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system / Q. Peng, S. Zhang, Q. Yang et al. // Biomaterials. - 2013. - V. 34. - I. 33. - P. 8521-8530. doi: 10.1016/j.biomaterials.2013.07.102.
  8. Hornok, V. Serum albumin nanoparticles: problems and prospects / V. Hornok // Polymers. - 2021. - V. 13. - I. 21. - Art. № 3759. - 11 p. doi: 10.3390/polym13213759.
  9. Bychkova, A.V. Study of protein coatings cross-linked via the free-radical mechanism on magnetic nanoparticles by the method of spectral and fluorescent probes / A.V. Bychkova, P.G. Pronkin, O.N. Sorokina et al. // Colloid Journal. - 2014. - V. 76. - I. 4. - P. 387-394. doi: 10.1134/S1061933X14040036.
  10. Michaelis, K. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain / K. Michaelis, M.M. Hoffmann, S. Dreis et al. // Journal of Pharmacology and Experimental Therapeutics. - 2006. - V. 317. - I. 3. - P. 1246-1253. doi: 10.1124/jpet.105.097139.
  11. Yang, R. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo / R. Yang, Y. An, F. Miao et al. // International Journal of Nanomedicine. - 2014. - V. 9. - P. 4231-4243. doi: 10.2147/IJN.S67210.
  12. Spada, A. The uniqueness of albumin as a carrier in nanodrug delivery / A. Spada, J. Emami, J.A. Tuszynski, A. Lavasanifar // Molecular Pharmaceutics. - 2021. - V. 18. - I. 5. - P. 1862-1894. doi: 10.1021/acs.molpharmaceut.1c00046.
  13. Ostroushko, A.A. The physicochemical properties and influence on living organisms of nanocluster polyoxomolybdates as prospective bioinspired substances (based on materials from the plenary lecture) / A.A. Ostroushko, I.D. Gagarin, K.V. Grzhegorzhevskii et al. // Journal of Molecular Liquids. - 2020. - V. 301. - P. 110910-1-110910-12. doi: 10.1016/j.molliq.2019.110910.
  14. Grzhegorzhevskii, K. Association of Keplerate-type polyoxometalate {Mo72Fe30} with tetracycline: nature of binding sites and antimicrobial action / K. Grzhegorzhevskii, M. Tonkushina, P. Gushchin et al. // Inorganics. - 2022. - V. 11. - I. 1. - Art. № 9. - 12 p. doi: 10.3390/inorganics11010009.
  15. Tonkushina, M.O. The Electrostatic-Mediated Formation of a Coordination Complex: the Trapping and Release of an Antitumor Drug with an Anthracycline Core from {Mo72Fe30}-Based Ensembles / M.O. Tonkushina, K.V. Grzhegorzhevskii, A.A. Ermoshin et al. // ChemistrySelect. - 2022. - V. 7. - I. 45. - Art. № e202203684. - 8 p. doi: 10.1002/slct.202203684.
  16. Soria-Carrera, H. Polyoxometalate-peptide hybrid materials: from structure-property relationships to applications / H. Soria-Carrera, E. Atrián-Blasco, R. Martín-Rapún, S.G. Mitchell // Chemical Science. - 2023. - V. 14. - I. 1. - P. 10-28. doi: 10.1039/D2SC05105B.
  17. Bijelic, A. The use of polyoxometalates in protein crystallography - An attempt to widen a well-known bottleneck / A. Bijelic, A. Rompel // Coordination Chemistry Reviews. - 2015. - V. 299. - P. 22-38. doi: 10.1016/j.ccr.2015.03.018.
  18. Gil, A.Computational modelling of the interactions between polyoxometalates and biological systems / A. Gil, J.J. Carbó // Frontiers in Chemistry. - 2022. - V. 10. - Art. № 876630. - 7 p. doi: 10.3389/fchem.2022.876630.
  19. Тонкушина, M.O. Деструкция полиоксометаллата {Mo72Fe30} как транспортного агента в средах, моделирующих кровь, его стабилизация альбумином / M.O. Тонкушина, И.Д. Гагарин, O.В. Русских и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - C. 885-892. doi: 10.26456/pcascnn/2020.12.885.
  20. Müller, A. Archimedean synthesis and magic numbers: "sizing" giant molybdenum-oxide-based molecular spheres of the Keplerate type / A. Müller, S. Sarkar, S.Q.N. Shah et al. // Angewandte Chemie International Edition. - 1999. - V. 38. - I. 21. - P. 3238-3241. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3238::AID-ANIE3238>3.0.CO;2-6.
  21. Grzhegorzhevskii, K.V. Thermal destruction of giant polyoxometalate nanoclusters: A vibrational spectroscopy study / K.V. Grzhegorzhevskii, P.S. Zelenovskiy, O.V. Koryakova, A.A. Ostroushko // Inorganica Chimica Acta. - 2019. - V. 489. - P. 287-300. doi: 10.1016/j.ica.2019.01.016.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».