Geometric preferential attachment with choice-based edge step
- 作者: Malyshkin Y.A.1
-
隶属关系:
- Tver State University
- 期: 编号 16 (2024)
- 页面: 381-386
- 栏目: Theory of nanosystems
- URL: https://bakhtiniada.ru/2226-4442/article/view/319443
- DOI: https://doi.org/10.26456/pcascnn/2024.16.381
- EDN: https://elibrary.ru/ILIYMV
- ID: 319443
如何引用文章
全文:
详细
作者简介
Yury Malyshkin
Tver State University
Email: yury.malyshkin@mail.ru
Ph. D., Docent of Applied Mathematics and Cybernetics Department
参考
- Živkovic J., Tadic B. Nanonetworks: The graph theory framework for modeling nanoscale systems. Nanoscale Systems: Mathematical Modeling, Theory and Applications, 2013, vol. 2, pp. 30-48. doi: 10.2478/nsmmt-2013-0003.
- Vecchio D.A., Mahler S.H., Hammig M.D., Kotov N.A. Structural analysis of nanoscale network materials using graph theory. ACS Nano, 2021, vol. 15, issue 8, pp. 12847-12859. doi: 10.1021/acsnano.1c04711.
- Rana M.M., Nguyen D.D. Geometric graph learning to predict changes in binding free energy and protein thermodynamic stability upon mutation, The Journal of Physical Chemistry Letters, 2023, vol. 14, issue 49, pp. 10870-10879. doi: 10.1021/acs.jpclett.3c02679.
- Barabási A., Albert R. Emergence of scaling in random networks, Science, 1999, vol. 286, issue 5439, pp. 509-512. doi: 10.1126/science.286.5439.509.
- Móri T.F. On random trees, Studia Scientiarum Mathematicarum Hungarica, 2002, vol. 39, issue 1-2, pp. 143-155. doi: 10.1556/SScMath.39.2002.1-2.9.
- Móri T.F. The maximum degree of the Barabási-Albert random tree, Combinatorics, Probability and Computing, 2005, vol. 14, issue 3, pp. 339-348. doi: 10.1017/S0963548304006133.
- Haslegrave J., Jordan J. Preferential attachment with choice, Random Structures and Algorithms, 2016, vol. 48, issue 4, pp. 751-766. doi: 10.1002/rsa.20616.
- Krapivsky P.L, Redner S. Choice-driven phase transition in complex networks, Journal of Statistical Mechanics: Theory and Experiment, 2014, vol. 2014, art. no. P04021, 14 p. doi: 10.1088/1742-5468/2014/04/P04021.
- Malyshkin Y. Preferential attachment combined with the random number of choices, Internet Mathematics, 2018, vol. 1, issue 1, pp. 1-25. doi: 10.24166/im.01.2018.
- Malyshkin Y., Paquette E. The power of choice combined with preferential attachment, Electronic Communications in Probability, 2014, vol. 19, issue 44, pp. 1-13. doi: 10.1214/ECP.v19-3461.
- Haslegrave J., Jordan J., Yarrow M. Condensation in preferential attachment models with location-based choicem Random Structures and Algorithms, 2020, vol. 56, issue 3, pp. 775-795. doi: 10.1002/rsa.20889.
- Malyshkin Y. Sublinear preferential attachment combined with a growing number of choices, Electronic Communications in Probability, 2020, vol. 25, issue 87, pp. 1-12. doi: 10.1214/20-ECP368.
- Malyshkin Y., Paquette E. The power of choice over preferential attachment, Latin American Journal of Probability and Mathematical Statistics, 2015, vol. 12, issue 2, pp. 903-915.
- Alves C., Ribeiro R., Sanchis R. Preferential attachment random graphs with edge-step functions, Journal of Theoretical Probability, 2021, vol. 34, issue 1, pp. 438-476. doi: 10.1007/s10959-019-00959-0.
- Chen H.F. Stochastic approximation and its applications, Nonconvex Optimization and Its Applications. New York, Springer, 2002, vol. 64, XV, 360 p. doi: 10.1007/b101987.
- Malyshkin Y. Preferential attachment with choice-based edge step. Available at: https://arxiv.org/abs/2309.16591 (accessed 01.08.2024). doi: 10.48550/arXiv.2309.16591.
补充文件

