УДК: 537.9 Оригинальная статья

Магниторезистивность композитов LSMO/(Cu₂O, Ag)

А.А. Утоплов¹, Н.В. Пруцакова², А.Г. Рудская¹, А.В. Назаренко³, М.В. Белокобыльский¹, Ю.В. Кабиров¹

¹ФГАОУ ВО «Южный федеральный университет» 344006, Россия, Ростов-на-Дону, ул. Большая Садовая, 105/42

²ФГБОУ ВО «Донской государственный технический университет» 344000, Россия, Ростов-на-Дону, пл. Гагарина, 1

³ФГБУН «Федеральный исследовательский центр Южный научный центр Российской академии наук» 344006, Россия, Ростов-на-Дону, пр. Чехова, 41 shpilevay@mail.ru

DOI: 10.26456/pcascnn/2024.16.307

Синтезированы исследованы электрические, структурные Аннотация: И магниторезистивные свойства керамических композитов с различным массовым соотношением компонентов: $(Cu_2O+CuO)_x/(La_{0.7}Sr_{0.3}MnO_3)_{1-x}$, (x=0.17; 0.22; 0.33; 0.43;0,48; 0,53; 0,58; 0,63; 0,68; 0,72; 0,77; 0,82; 0,86; 0,91; 0,99), a takke $Ag_{y}/(La_{0.7}Sr_{0.3}MnO_3)_{1-y}$, (y=0;0,02;0,06;0,08;0,10;0,12;0,25;0,50). Синтез композитов с оксидами меди проведен по оригинальной технологии приготовления образцов с использованием дисперсной меди и заранее приготовленного ферромагнитного оксида со структурой перовскита манганита $La_{0,7}Sr_{0,3}MnO_3$ с отжигом при 1000-1050°C. Прессованные смеси с содержанием меди менее 45% массовых отжигались при температуре 1050°С. При более высоких содержаниях меди отжиг выполнен при 1000°С. Составы с наночастицами серебра приготовлены методом восстановления из нитрата серебра. Показано, что в синтезированных композитных составах с массовым соотношением компонентов $(Cu_2O+CuO)_{0,43}/(La_{0,7}Sr_{0,3}MnO_3)_{0,57}$ наивысшие значения магниторезистивности порядка 7% в постоянном магнитном поле 14 кЭ при комнатной температуре. При этом максимум магниторезистивности коррелирует с особой областью изменения зависимости электрического сопротивления от соотношения компонентов в этих составах. В составе $Ag_{0,08}/(LSMO)_{0,92}$ значения магниторезистивности достигают 5,5%.

Ключевые слова: керамические композиты, магниторезистивность, манганит лантана-стронция, оксиды меди, наночастицы серебра, перколяция.

1. Введение

2024

Научный и технический прогресс во многом связан с созданием новых неупорядоченных материалов, в которых ярко проявляются определенные физические свойства. К таким материалам можно отнести многослойные конструкции ферромагнетик/неферромагнетик, в которых проявляется гигантское магнитосопротивление (ГМС) [1, 2]. Создание этих материалов привело к качественным изменениям устройств магнитной записи информации. В таких конструкциях электроны туннелируют через наноразмерный барьер, спейсер, находящийся между ферромагнитными слоями. Прозрачность такого барьера выше во внешнем магнитном поле, чем при его отсутствии. Это приводит к уменьшению электрического сопротивления в постоянном магнитном поле — к эффекту туннельного © А.А. Утоплов, Н.В. Пруцакова, А.Г. Рудская, А.В. Назаренко, М.В. Белокобыльский, Ю.В. Кабиров,

магнитосопротивления или магниторезистивности (ТМС или ТМР). Подобные явления спин-зависимого туннелирования существуют и в керамических составах вблизи порога перколяции и также описываются Слончевски [3, 4]. Объемные керамические моделью ферромагнетик/неферромагнетик могут иметь в своем составе не только d-металлы, но и манганит в ферромагнитной фазе $La_{0.7}Sr_{0.3}MnO_3$ (LSMO) в co прослойкой, вторым компонентом, что формировать сетку туннельных магнитных контактов (ТМК) [5]. В неферромагнитного качестве второго, компонента ΜΟΓΥΤ быть использованы неорганические или органические соединения [6, Следует отметить заметное влияние на чувствительность и на величину материалов магниторезистивности композитных таких технологического процесса синтеза композитов, как температура, время синтеза, начальное давление перед синтезом образца и других. Большим преимуществом синтеза композитов с $La_{0.7}Sr_{0.3}MnO_3$ является стабильность этого оксида, высокая спиновая поляризация носителей заряда и достаточно высокая температура Кюри, 360 К [8, 9].

В научной литературе данные по магниторезистивности керамики на основе LSMO со вторым компонентом в виде наночастиц металла, или полупроводника типа оксида меди (I) и меди (II), Cu_2O и CuO достаточно редки и магниторезистивные свойства исследуют при температурах ниже комнатной, обычно исследователи изучают свойства твердого раствора с внедренными металлами [10, 11]. Целью нашей работы было создание новых керамических составов по оригинальной технологии и исследование магниторезистивности. Также представляет интерес применение неферромагнитных наночастиц благородных металлов, таких как серебро, качестве второго компонента, влияющего на спин-зависимое туннелирование между гранулами манганита.

2. Методика эксперимента и описание результатов

В нашей работе для уменьшения возможности внедрения атомов металлов в кристаллическую структуру $La_{0,7}Sr_{0,3}MnO_3$ при синтезе всех композитных составов использован заранее приготовленный манганит LSMO. Перовскит $La_{0,7}Sr_{0,3}MnO_3$ был синтезирован из стехиометрической смеси оксидов La_2O_3 , $SrCO_3$, Mn_2O_3 при температуре 1150° C в течение четырех часов. Далее, были составлены смеси порошковой меди типа ПМС-1 с размером частиц 100 мкм и синтезированного LSMO с различным соотношением компонентов. Гомогенизированные смеси Cu/LSMO после прессования под давлением 300 МПа отжигались при температуре 1050° C до концентрации меди 45% массовых, а остальные при 1000° C (из-за

плавления дисперсной меди) в течение трех часов в атмосфере. После синтеза образцы представляли собой керамику с различным соотношением суммы оксидов Cu_2O+CuO с преобладанием Cu_2O и манганита: $(Cu_2O+CuO)_x/(La_{0,7}Sr_{0,3}MnO_3)_{1-x}$ ($x=0,17;\ 0,22;\ 0,33;\ 0,43;\ 0,48;\ 0,53;\ 0,58;\ 0,63;\ 0,68;\ 0,72;\ 0,77;\ 0,82;\ 0,86;\ 0,91;\ 0,99)$. Образцы имели форму цилиндров с диаметром 10 мм, толщиной 2 мм. Технология приготовления плотной керамики указанных составов отработана на более чем ста образцах. Относительная плотность композитов составила 0,8 по сравнению с расчетной. Все образцы с оксидами меди имеют р-тип проводимости.

Образцы с наночастицами серебра $Ag_y/(La_{0,7}Sr_{0,3}MnO_3)_{1-y}$ (y=0;0,02;0,06;0,08;0,10;0,12;0,25;0,50) приготовлены методом восстановления серебра из $AgNO_3$ при температуре 550°C на заранее приготовленном составе $La_{0,7}Sr_{0,3}MnO_3$ и последующем прессовании под давлением 300 МПа аналогично методикам работы [12] и частично [13].

Рентгенофазовый и структурный анализ синтезированных композитов проведен на дифрактометре ДРОН-3М с использованием CuK_{α} -излучения. Элементный состав контролировался при помощи рентгенофлуоресцентного анализа на Bruker M4 Tornado. Электронномикроскопические снимки сколов образцов получены с помощью сканирующего электронного микроскопа Carl Zeiss EVO 40 в ЦКП ЮНЦ РАН. Электроды на композиты нанесены методом восстановления серебра из нитрата серебра $AgNO_3$ при 550°C. Магниторезистивные свойства композитов исследованы в постоянном магнитном поле в интервале от 0 до 14 кЭ.

Экспериментальные исследования показали, что после синтеза в течение трех часов в атмосфере при температуре 1050° С составов Cu/LSMO с различным соотношением исходных компонентов происходит полное окисление меди и формирование матрицы для частиц LSMO. Однако образцы, содержащие более 45% меди, полностью расплавлялись, что приводило к невозможности изучения их магниторезистивности. Поэтому для составов с содержанием меди выше 45% температура была снижена до 1000° С. Рентгеновская дифракция приготовленных образцов показала наличие в них двух оксидов меди Cu_2O и CuO, а также манганита $La_{0,7}Sr_{0,3}MnO_3$, фрагмент рентгенограммы лучшего по магниторезистивности из композитов приведен на рис. 1. Рентгенограммы обработаны с помощью полнопрофильного метода Ритвельда. Профильный R-фактор R_p не превышал 6%. Точность измерения параметров ячейки составляла $\pm 0,0005$ Å. Согласно рентгеноструктурным данным параметры ячейки

LSMO во всех составах сохраняются с точностью до 0,01 Å, что свидетельствует об отсутствии внедрения значительного количества атомов меди в кристаллическую структуру манганита. Средний размер областей совершенства рассчитан по формуле Селякова-Шеррера [14]:

$$D = \lambda / (\beta \cos \theta), \tag{1}$$

где λ — длина волны падающего излучения, β — полуширина дифракционного отражения, θ — угол дифракции.

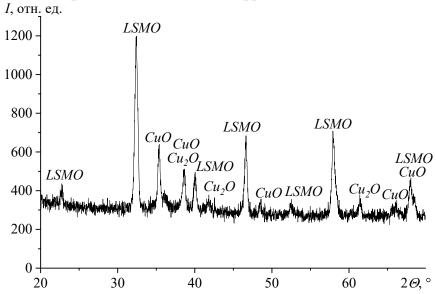


Рис. 1. Фрагмент рентгенограммы композита $(Cu_2O + CuO)_{0,43} / (La_{0,7}Sr_{0,3}MnO_3)_{0,57}$.

Особое внимание уделено составам вблизи начального содержания меди 40% массовых, так как приготовленные образцы с таким составом наилучшие значения магниторезистивности $(Cu_2O + CuO)_{0.43} / (La_{0.7}Sr_{0.3}MnO_3)_{0.57}$. В Таблице 1 представлены характеристики атомной структуры, фазовый состав приготовленных композитов: группа симметрии фазы, параметры ячейки, ее объем V, полуширина указанного дифракционного отражения β на половине его высоты с углом дифракции 2θ , а также размеры областей когерентного рассеяния D. Содержание определено оксидов меди после синтеза помощью рентгендифракционного анализа и согласуется с пересчетом массового содержания меди в оксиды. При этом массовая доля оксидов меди в композитах увеличивается по сравнению с содержанием меди до синтеза.

Следует отметить, что для образца $(Cu_2O + CuO)_{0,43} / (La_{0,7}Sr_{0,3}MnO_3)_{0,57}$ наблюдается наименьшее среднее значение областей когерентного рассеяния — 16,0 нм для компонента Cu_2O в составе указанного образца. Согласно мозаичной теории кристаллитов, такой факт свидетельствует о высокой дефектности соединения, в данном случае — оксида меди Cu_2O [14]. Изображение характерной микроструктуры композитных образцов

показано на примере состава $(Cu_2O + CuO)_{0,43} / (La_{0,7}Sr_{0,3}MnO_3)_{0,57}$ на рис. 2.

Таблица 1. Структурные данные соединений исходного оксида $La_{0,7}Sr_{0,3}MnO_3$ и сформировавшихся основных компонентов составов после синтеза. В таблице указано начальное массовое содержание порошковой меди ПМС-1 и манганита $La_{0,7}Sr_{0,3}MnO_3$.

Начальный состав	Фазы после синтеза	Группа симметрии	a, Å	c, Å	b, Å	<i>V</i> , Å ³	hkl	2θ, °	β, °	D, нм
LSMO	LSMO	$R\overline{3}c$	5,5043	13,3506	\times	350	024	46,63	0,40	24
Си	Cu_2O	Pn3m	4,2972			79	111	36,17	0,34	27
	СиО	C2/c	4,6492	3,4139	5,1450	80,5	111	38,56	0,18	52
15%Cu / 85%LSMO	LSMO	$R\overline{3}c$	5,4956	13,3591	$\overline{}$	349	024	46,70	0,36	27
	Cu_2O	Pn3m	4,2710	><		75	111	36,40	0,40	23
	CuO	C2/c	4,6898	3,4227	5,1625	81,7	111	38,63	0,44	21
40%Cu / 60%LSMO	LSMO	$R\overline{3}c$	5,4909	13,3487	><	349	024	46,62	0,41	23
	Cu_2O	Pn3m	4,2909	><	\nearrow	79	111	36,15	0,58	16
	СиО	C2/c	4,6861	3,4149	5,1260	80,9	111	38,63	0,36	26
45%Cu /	LSMO	$R\overline{3}c$	5,4911	13,3489	><	356	024	46,62	0,40	24
55%LSMO	Cu_2O	Pn3m	4,2810	><	><	78,4	111	36,12	0,51	19
	CuO	C2/c	4,6868	3,4150	5,1460	80	111	38,63	0,44	21
50%Cu /	LSMO	$R\overline{3}c$	5,4919	13,3828	$\geq \leq$	350	024	46,45	0,35	28
50% <i>LSMO</i>	Cu_2O	Pn3m	4,2726	><	><	78	111	36,25	0,42	22
55%Cu /	LSMO	$R\overline{3}c$	5,4856	13,3351	><	348	024	46,62	0,80	12
45% <i>LSMO</i>	Cu_2O	Pn3m	4,2613			77	111	36,19	0,42	220
60%Cu /	LSMO	$R\overline{3}c$	5,4947	13,3483	$\overline{}$	349	024	46,63	0,49	20
40% <i>LSMO</i>	Cu_2O	Pn3m	4,2860	>		78	111	36,12	0,56	17
65%Cu /	LSMO	$R\overline{3}c$	5,5011	13,3568		350	024	46,65	0,33	29
35% <i>LSMO</i>	Cu_2O	Pn3m	4,2757	$\overline{}$		78	111	36,18	0,44	21
70%Cu /	LSMO	$R\overline{3}c$	5,4955	13,3524		349	024	46,70	0,32	30
30% <i>LSMO</i>	Cu_2O	Pn3m	4,2717	><		78	111	36,22	0,33	28
75%Cu /	LSMO	$R\overline{3}c$	5,5026	13,3623		350	024	46,62	0,41	23
25% <i>LSMO</i>	Cu_2O	Pn3m	4,2792	>		78	111	36,25	0,27	34
80%Cu /	LSMO	$R\overline{3}c$	5,5030	13,3544		350	024	46,64	0,44	22
20% <i>LSMO</i>	Cu_2O	Pn3m	4,2931			79	111	36,17	0,3	31
85%Cu /	LSMO	$R\overline{3}c$	5,4925	13,3590		349	024	46,64	0,33	29
15% <i>LSMO</i>	Cu_2O	Pn3m	4,2653			77,6	111	36,28	0,36	26
90%Cu /	LSMO	$R\overline{3}c$	5,5125	13,3691		352	024	_	_	_
10% <i>LSMO</i>	Cu_2O	Pn3m	4,2816			78,5	111	36,31	0,24	39
95%Cu /	LSMO	$R\overline{3}c$	_	_		_	_	_	_	_
5%LSMO	Cu_2O	Pn3m	4,2730			78	111	36,39	0,2	46
TT		1	1		\sim	1	·	*	·	1

Наши эксперименты с использованием готовых оксидов меди Cu_2O и CuO при изготовлении композитов соответствующего состава показали, что такая керамика в лучшем случае проявляет низкие значения магниторезистивности, около 2%.

Отметим, что кристаллиты манганита *LSMO* имеют средний размер порядка 8 мкм и размещены в матрице из гораздо более крупных частиц оксидов меди, около 50 мкм. Невысокая пористость композитов порядка 15-20%, вероятно, связана с технологией приготовления образцов с дисперсной медью.

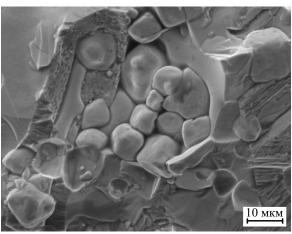


Рис. 2. SEM-изображение скола образца $(Cu_2O + CuO)_{0,43}/(La_{0,7}Sr_{0,3}MnO_3)_{0,57}$.

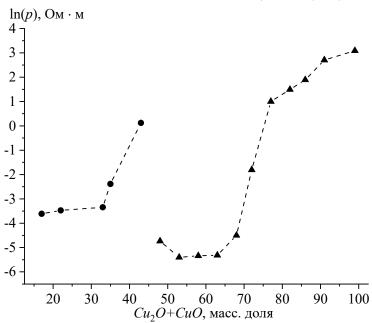


Рис. 3. Удельное сопротивление образцов $(Cu_2O + CuO)/LSMO$ в зависимости от массовой доли оксидов меди. Здесь: • — синтез образцов при температуре 1050° C, • — синтез при температуре 1000° C.

Зависимость удельного сопротивления приготовленных композитов показана на рис. 3. Температура синтеза композитов подобрана экспериментально с целью приготовления плотной керамики, пригодной для исследований и практического применения. При более высоких температурах для данных составов происходило полное расплавление, а при более низких – неполный переход меди в оксиды. Следует отметить, что локальный максимум удельного сопротивления для состава

 $(Cu_2O + CuO)_{0,43} / (La_{0,7}Sr_{0,3}MnO_3)_{0,57}$ коррелирует с максимумом магниторезистивности.

Магниторезистивность MP композитов рассчитывалась по формуле: $MP = \Delta R / R(H)$, (2)

где $\Delta R = R(H) - R(0)$, R(H) — сопротивление образца в постоянном магнитном поле, R(0) — сопротивление образца без постоянного магнитного поля. Максимум значения магниторезистивности композитов $(Cu_2O + CuO)_x / (La_{0,7}Sr_{0,3}MnO_3)_{1-x}$ в зависимости от содержания оксидов меди достигается при x = 0,43 и имеет значение порядка 7% (см. рис. 4).

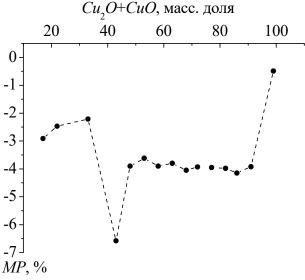


Рис. 4. Зависимость магниторезистивности образцов $(Cu_2O + CuO)_x / (La_{0,7}Sr_{0,3}MnO_3)_{1-x}$ от доли оксидов меди. Приведены усредненные значения MP нескольких образцов для каждого соотношения содержания оксидов меди и манганита.

5 показаны зависимости магниторезистивности ряда образцов от напряженности постоянного магнитного поля. При комнатной температуре зависимости имеют линейный характер. Точность измерений расчета напряженности магнитного ПОЛЯ И магниторезистивности соответствует размеру знака на рисунке. Отметим, что оксид Cu_2O авторы работ [15, 16] отмечают как хороший спейсер для спинового транспорта, причем длина спиновой корреляции достигают 40 нм. Отметим, что оксиды меди Cu_2O и CuO в чистом виде не являются ферромагнитными. ферромагнитные Однако Cu_2O проявляет свойства оксид возникновении в нем дефектов или допировании [17]. Такие свойства межгранульной матрицы для LSMO, вероятно, приводят к возможности спинового транспорта носителей заряда в постоянном магнитном поле между частицами LSMO. Это подтверждается тем, что магниторезистивные свойства составов $(Cu_2O + CuO)/(La_{0,7}Sr_{0,3}MnO_3)$ не исчезают даже при очень высоких концентрациях оксида меди Cu_2O (90% и даже 99%, см. рис. 4).

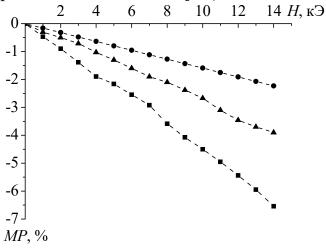


Рис. 5. Зависимость магниторезистивности от напряженности постоянного магнитного поля для образцов $(Cu_2O + CuO)_x / (La_{0,7}Sr_{0,3}MnO_3)_{1-x}$: • -x = 0,22; • -x = 0,43; • -x = 0,63.

С целью исследования связи магниторезистивности составов $Ag_y(La_{0,7}Sr_{0,3}MnO_3)_{1-y}$ (y=0;0,02;0,06;0,08;0,10;0,12;0,25;0,50) с характером поведения электрического сопротивления от доли серебра были проведено изучение удельного сопротивления указанных составов, данные приведены в Таблице 2.

Таблица 2. Характеристики образцов Ag / LSMO, где y — массовая доля серебра, ρ — удельное сопротивление композита, D — средний размер области совершенства (по Шерреру).

Доля серебра, у	<i>MP</i> , %	ρ , Om*m	D , Ag , HM	D,LSMO, HM
0	-2,00	0,0045	_	25,5
0,02	-2,00	0,0038	24,5	26,7
0,06	-2,50	0,0032	23,0	24,0
0,08	-5,50	0,0031	29,3	21,3
0,10	-1,90	0,0023	31,0	22,1
0,12	-1,56	0,0007	34,0	23,2
0,25	-0,10	0,0004	36,1	25,6
0,50	0	0,0002	38,2	22,5

С увеличением содержания серебра для образцов с y > 0.08 наблюдается резкое уменьшение сопротивления, что может свидетельствовать о прохождении порога перколяции для частиц серебра и манганита. Для составов $Ag_y(La_{0,7}Sr_{0,3}MnO_3)_{1-y}$ можно отметить, что максимум магниторезистивности достигается в области уменьшения сопротивления при увеличении содержания серебра, при x = 0.08.

3. Заключение

По оригинальной технологии синтезированы композитные

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

материалы $(Cu_2O + CuO)_x / (La_{0.7}Sr_{0.3}MnO_3)_{1-x}, x = 0 - 0.99; Ag_x(La_{0.7}Sr_{0.3}MnO_3)_{1-x},$ y = 0 - 0,50. Исследованы их магниторезистивные свойства. Показано, что максимальные значения магниторезистивности проявляются в составе $(Cu_2O+CuO)_{0,43}\,/\,(La_{0,7}Sr_{0,3}MnO_3)_{0,57}\,-$ около 7% в постоянном магнитном поле напряженностью 14 кЭ. Установлена корреляция между характером поведения электрического сопротивления составов Ag / LSMO магниторезистивностью. Интересно отметить, что для составов даже с концентрацией оксидов меди (около 90% магниторезистивность не обращается в ноль, а имеет величины порядка 4%, что может свидетельствовать о длине спиновой корреляции в оксиде меди значительно большей, чем длина волны де Бройля для электрона (до 10 нм). Поэтому в дальнейшем необходимо изучение магнитных свойств композитной керамики $(Cu_2O + CuO)_x / (La_{0.7}Sr_{0.3}MnO_3)_{1-x}$.

Авторы выражают благодарность за помощь в проведении элементного анализа образцов научному сотруднику Положенцеву О.Е.

Библиографический список:

- 1. **Baibich, M.N.** Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice / M.N. Baibich, J.M. Broto, A. Fert et al. // Physical Review Letters. 1988. V. 61. I. 21. P. 2472-2475. DOI: 10.1103/PhysRevLett.61.2472.
- 2. **Binasch, G.** Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange / G. Binasch, P. Grünberg, F. Saurenbach et al. // Physical Review B. − 1989. − V. 39. − № 7. − P. 4828-4830. DOI: https://doi.org/10.1103/PhysRevB.39.4828.
- 3. **Гриднев, С.А.** Нелинейные явления в нано- и микрогетерогенных системах / С.А. Гриднев, Ю.Е. Калинин, А.В. Ситников, О.В. Стогней. М.: Бином, 2012. 352 с.
- 4. **Slonczewski, J.C.** Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier / J.C. Slonczewski // Physical Review B. 1989. V. 39. I. 10. P. 6995-7002. DOI: 10.1103/PhysRevB.39.6995.
- 5. **Волков, Н.В.** Магнитные туннельные структуры на основе манганитов / Н.В. Волков // Успехи физических наук. 2012. Т. 182. № 3. С. 263-285. DOI: 10.3367/UFNr.0182.201203b.0263.
- 6. **Gupta, S.** Enhanced room-temperature magnetoresistance in $La_{0.7}Sr_{0.3}MnO_3$ -glass composites / S. Gupta, R. Ranjit, C. Mitra et al. // Applied Physics Letters. 2001. V. 78. I. 3. P. 362-364. DOI: 10.1063/1.1342044.
- 7. **Artale, C.** Electric and magnetic properties of PMMA/manganite composites / C. Artale, S. Fermepin, M. Forti et al. // Physica B: Condensed Matter. 2009. V. 404. I. 18. P. 2760-2762. DOI: 10.1016/j.physb.2009.06.081.
- 8. **Bowen, M.** Nearly total spin polarization in $La_{2/3}Sr_{1/3}MnO_3$ from tunneling experiments / M. Bowen, M. Bibes, A. Barthelemy et al. // Applied Physics Letters. 2003. V. 82. I. 2. P. 233-235. DOI: 10.1063/1.1534619.
- 9. **Urushibara, A.** Insulator-metal transition and giant magnetoresistance in La_{1-x}Sr_xMnO₃ / A. Urushibara, Y. Moritomo, T. Arima et al. // Physical Review B. 1995. V. 51. I. 20. P. 14103-14109. DOI: 10.1103/PhysRevB.51.14103.
- 10. **Zulkarnain, Z.** Regulating the electron transport mechanism and increasing magnetoresistance: the role of CuO filler in $La_{0.7}Sr_{0.2}Ca_{0.1}MnO_3$ grain boundary / Z. Zulkarnain, A. Imaduddin, D.R. Munazat et al. // Research Square. -2023. -22 p. DOI: 10.21203/rs.3.rs-2745660/v1.
- 11. **Zhou, Yu.** Effects of copper doping on the structure, electrical and low-field magnetoresistance properties of $(1-x)La_{0.67}Sr_{0.33}MnO_3/xCu$ (x=0-0.15) composite coatings / Y. Zhou, X. Zhu, S. Li // Ceramics International. -2017.-V.43.-I.13.-P.10026-10031. DOI: 10.1016/j.ceramint.2017.05.017.
- 12. Сидоров, А.И. Формирование нано- и микроструктурированных слоев серебра при термическом

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

- разложении пленки поливинилового спирта с азотнокислым серебром / А.И. Сидоров, П.А. Безруков, А.В. Нащекин, Н.В. Никаноров // Журнал технической физики. 2022. Т. 92. Вып. 9. С. 1377-1381. DOI: 10.21883/JTF.2022.09.52929.91-22.
- 13. **Кабиров, Ю.В.** Электрические свойства магниторезистивных композитов на основе манганитов / Ю.В. Кабиров, В.Г. Гавриляченко, А.С. Богатин и др. // Инженерный вестник Дона. -2018. -9 с.
- 14. **Гинье**, **А.** Рентгенография кристаллов. Теория и практика. / А. Гинье; пер. с франц. Е.Н. Беловой, С.С. Квитки, В.П. Тарасовой; под ред. Н.В. Белова. М.: Физматгиз, 1961. 604 с.
- 15. **Cantoni, M.** Band alignment at interface: A combined experimental-theoretical determination / M. Cantoni, D. Petti, R. Bertacco et al. // Applied Physics Letters. 2010. V. 97. I. 3. P. 032115-1-032115-3. DOI: DOI: 10.1063/1.3467206.
- 16. **Pallecchi, I.** Cu₂O as a nonmagnetic semiconductor for spin transport in crystalline oxide electronics / I. Pallecchi, L. Pellegrino, N. Banerjee et al. // Physical Review B. 2010. V. 81. I. 16. P. 165311-1-165311-10.DOI: 10.1103/PhysRevB.81.165311.
- 17. Chen, C. Magnetic properties of undoped Cu_2O fine powders with magnetic impurities and/or cation vacancies / Ch. Chen, L. He, L. Lai. et al. // Journal of Physics: Condensed Matter. $-2009. V. 21. N_0 14. Art. N_0 145601. 8 p. DOI: 10.1088/0953-8984/21/14/145601.$

References:

- 1. Baibich M.N., Broto J.M., Fert A. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice. *Physical Review Letters*, 1988, vol. 61, issue 21, pp. 2472-2475. DOI: 10.1103/PhysRevLett.61.2472.
- 2. Binasch G., Grünberg P., Saurenbach F. et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, *Physical Review B*, 1989, vol. 39, issue 7, pp. 4828-4830. DOI: 10.1103/PhysRevB.39.4828.
- 3. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., Stogney O.V. *Nelineinye yavleniya v nano- i mikrogeterogennykh sistemakh* [Nonlinear phenomena in nano- and microheterogeneous systems]. Moscow, Binom Publ., 2012, 352 p. (In Russian).
- 4. Slonczewski J.C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier, *Physical Review B*, 1989, vol. 39, issue 10, pp. 6995-7002. DOI: 10.1103/PhysRevB.39.6995.
- 5. Volkov N V Spintronics: manganite-based magnetic tunnel structures, *Physics-Uspekhi*, 2012, vol. 55, issue 3, pp. 250-269 (2012). DOI: 10.3367/UFNe.0182.201203b.0263.
- 6. Gupta S., Ranjit R., Mitra C. et al. Enhanced room-temperature magnetoresistance in La_{0.7}Sr_{0.3}MnO₃-glass composites, *Applied Physics Letters*, 2001, vol. 78, issue 3, pp. 362-364. DOI: 10.1063/1.1342044.
- 7. Artale C., Fermepin S., Forti M. et al. Electric and magnetic properties of PMMA/manganite composites, *Physica B: Condensed Matter*, 2009, vol. 404, issue 18, pp. 2760-2762. DOI: 10.1016/j.physb.2009.06.081.
- 8. Bowen M., Bibes M., Barthelemy A. et al. Nearly total spin polarization in La_{2/3}Sr_{1/3}MnO₃ from tunneling experiments, *Applied Physics Letters*, 2003, vol. 82, issue 2, pp. 233-235. DOI: 10.1063/1.1534619.
- 9. Urushibara A., Moritomo Y., Arima T. et al. Insulator-metal transition and giant magnetoresistance in La_{1-x}Sr_xMnO₃, *Physical Review B*, 1995, vol. 51, issue 20, pp. 14103-14109. DOI: 10.1103/PhysRevB.51.14103.
- 10. Zulkarnain Z., Imaduddin A., Munazat D.R. et al. Regulating the electron transport mechanism and increasing magnetoresistance: the role of CuO filler in La_{0.7}Sr_{0.2}Ca_{0.1}MnO₃ grain boundary, *Research Square*, 2023, 22 p. DOI: 10.21203/rs.3.rs-2745660/v1.
- 11. Zhou Y., Zhu X., Li S. Effects of copper doping on the structure, electrical and low-field magnetoresistance properties of (1-x)La_{0.67}Sr_{0.33}MnO₃/xCu (x=0-0.15) composite coatings, *Ceramics International*, 2017, vol. 43, issue 13, pp. 10026-10031. DOI: 10.1016/j.ceramint.2017.05.017.
- 12. Sidorov A.I., Bezrukov P.A., Nashchekin A.V., Nikanorov N.V. Formation of nano- and microstructured layers of silver during thermal destruction of polyvinyl alcohol with silver nitrate, *Technical Physics*, 2022, vol. 67, no. 9, pp. 1186-1190. DOI: 10.21883/TP.2022.09.54682.91-22.
- 13. Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S. et al. Ehlektricheskie svoistva magnitorezistivnykh kompozitov na osnove manganitov [Electrical properties of magnetoresistive composites based on manganites], Inzhenernyi vestnik Dona [Engineering Journal of Don], 2018, no. 4 (51), 9 p. (In Russian).
- 14. Guinier A. *Théorie et technique de la radiocristallographie* [Theory and technique of radiocrystallography]. Paris, Dunod, 1956, 736 p. (In French).
- 15. Cantoni M., Petti D., Bertacco R. et al. Band alignment at interface: A combined experimental-theoretical determination, *Applied Physics Letters*, 2010, vol. 97, issue 3, pp. 032115-1-032115-3. DOI: 10.1063/1.3467206.
- 16. Pallecchi I., Pellegrino L., Banerjee N. et al. Cu₂O as a nonmagnetic semiconductor for spin transport in

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

crystalline oxide electronics, *Physical Review B*, 2010, vol. 81, issue 16, pp. 165311-1-165311-10. DOI: 10.1103/PhysRevB.81.165311.

17. Chen Ch., He L., Lai L. et al. Magnetic properties of undoped Cu₂O fine powders with magnetic impurities and/or cation vacancies, *Journal of Physics: Condensed Matter*, 2009, vol. 21, no. 14, art. № 145601, 8 p. DOI: 10.1088/0953-8984/21/14/145601.

Original paper

Magnetoresistance of LSMO/(Cu₂O, Ag) composites

A.A. Utoplov¹, N.V. Prutsakova², A.G. Rudskaya¹, A.V. Nazarenko³, M.V. Belokobylsky¹, Yu.V. Kabirov¹

¹Southern Federal University, Rostov-on-Don, Russia ²Don State Technical University, Rostov-on-Don, Russia ³Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russia

DOI: 10.26456/pcascnn/2024.16.307

Abstract: Electrical, structural and magnetoresistive properties of ceramic composites with different mass ratios of components were synthesized and studied: $(Cu_2O+CuO)_x/(La_{0,7}Sr_{0,3}MnO_3)_{1-x}$ (x=0,17; 0,22; 0,33; 0,43; 0,48; 0,53; 0,58; 0,63; 0,68; 0,72; 0,77; 0,82; 0,86; 0,91; 0,99), and $Ag_y/(La_{0,7}Sr_{0,3}MnO_3)_{1-y}$ (y=0; 0,02; 0,06; 0,08; 0,10; 0,12; 0,25; 0,50). The composites with copper oxides were synthesized using an original technology for sample preparation using dispersed copper and a pre-prepared ferromagnetic oxide with the perovskite structure $La_{0,7}Sr_{0,3}MnO_3$. Pressed mixtures with a copper content of less than 45% by weight were annealed at a temperature of 1050°C. At higher copper contents, annealing was performed at 1000°C. The compositions with silver nanoparticles were prepared by reduction from silver nitrate. The composites were synthesized using an original technology for sample preparation using dispersed copper and $La_{0,7}Sr_{0,3}MnO_3$ manganite with annealing at 1000-1050°C. It was shown that the synthesized composites with a mass ratio of components $(Cu_2O+CuO)_{0,43}/(La_{0,7}Sr_{0,3}MnO_3)_{0,57}$ exhibit the highest magnetoresistance values of about 7% in a constant magnetic field of 14 kOe at room temperature. The maximum magnetoresistance correlates with a special region of change in the dependence of electrical resistance on the component ratio in these compositions. In the $Ag_{0,08}/(LSMO)_{0,92}$ composition, the magnetoresistance values reach 5.5%.

Keywords: ceramic composites, magnetoresistance, lanthanum-strontium manganite, copper oxides, silver nanoparticles, percolation.

Утоплов Андрей Александрович – студент 1 курса магистратуры физического факультета ФГАОУ ВО «Южный федеральный университет»

Пруцакова Наталья Викторовна— к.ф.-м.н., доцент кафедры физики ФГБОУ ВО «Донской государственный технический университет»

Рудская Анжела Григорьевна – д.ф.-м.н., профессор кафедры «Нанотехнология» ФГАОУ ВО «Южный федеральный университет»

Назаренко Александр Владимирович — к.ф.-м.н., старший научный сотрудник ФГБУН «Федеральный исследовательский центр Южный научный центр РАН»

Белокобыльский Марк Вячеславович — лаборант кафедры общей физики ФГАОУ ВО «Южный федеральный университет»

Кабиров Юрий Вагизович — д.ф.-м.н., профессор кафедры общей физики $\Phi \Gamma AOV$ ВО «Южный федеральный университет»

 $Andrey\ A.\ Utoplov-1^{st}\ year\ master's\ student,\ Department\ of\ Physics,\ Southern\ Federal\ University$

Natalia V. Prutsakova - Ph. D., Docent, Physics Department, Don State Technical University

Angela G. Rudskaya – Ph. D., Professor, Nanotechnology Department, Southern Federal University

Alexander V. Nazarenko – Ph. D., Senior Researcher, Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences

Mark V. Belokobylsky – Laboratory Assistant, Department of General Physics, Southern Federal University Yuri V. Kabirov – Dr. Sc., Professor, Department of General Physics, Southern Federal University

Поступила в редакцию/received: 25.08.2024; после рецензирования/revised: 20.09.2024; принята/ассерted 26.09.2024.