УДК 53.086 Оригинальная статья

Применение ионных жидкостей в исследованиях микроструктуры диэлектриков методом сканирующей электронной микроскопии

А.И. Иванова, А.В. Дудиловская, О.Е. Журавлев, А.Д. Кафтанов ФГБОУ ВО «Тверской государственный университет» 170100, Россия, Тверь, ул. Желябова, 33 Ivanova.AI@tversu.ru

DOI: 10.26456/pcascnn/2024.16.154

результаты исследования Аннотация: В настоящей статье представлены непроводящих биологических, кристаллических объектов, порошков, а также образцов стеклокомпозитов с помощью ионной жидкости методом сканирующей электронной микроскопии. Ионные жидкости на основе дицианамидов N -алкилпиридиния, изученные в работе, получены по реакции метатезиса. В качестве проводящего покрытия для диэлектриков был использован раствор ионной жидкости в ацетоне. Установлено, что применение ионных жидкостей является альтернативой методам металлического и углеродного напыления на диэлектрические образцы. Представлены электронные изображения образцов, полученные такими методами микроскопии, как режим низкого вакуума, использование металлического напыления (Pt) на образцы, а также исследование образцов без проводящего покрытия. Проведен сравнительный анализ результатов, полученных традиционными методами и методом нанесения на образцы ионной жидкости. Показано, что использование электропроводящих ионных жидкостей, обладающих термической и химической стабильностью, дает возможность получать электронно-микроскопические изображения с высоким разрешением, а также позволяет визуализировать топографический и композиционный контраст исследуемых диэлектрических образцов.

Ключевые слова: ионная жидкость, пробоподготовка, диэлектрические образцы, микроструктура поверхности, сканирующая электронная микроскопия

1. Введение

экспериментальные Современные методики И перспективные технологические процессы создания и изучения микро- и наноструктур, наноматериалов, устройств и систем на их основе неразрывно связаны с аналитическими методами фундаментальных и прикладных исследований. Сканирующая электронная микроскопия (СЭМ) – один из наиболее распространенных прямых исследовательских методов в современной науке: от нанотехнологий и материаловедения до биологии и физики полупроводников [1, 2]. Особенностью электронной микроскопии является то, что исследования проводятся в вакууме для предотвращения рассеяния электронного пучка газообразными молекулами в камере, что затрудняет наблюдение влагосодержащих образцов. Кроме того, поверхность образца должна быть электропроводящей для получения идеального изображения.

Исследования диэлектрических (непроводящих) образцов в сканирующем электронном микроскопе сопровождаются эмиссией электронов в вакуум, поляризацией молекул, образованием сильных приповерхностных электрических полей и потенциалов. Зарядка

поверхности может приводить к искажениям контраста изображений, дефокусировке и ошибкам при проведении количественного микроанализа. Для преодоления этих ограничений разрабатываются новые системы и электронной микроскопии, методы a также новые приемы В работе [3] пробоподготовки. представлены первые результаты наблюдения ионной жидкости с помощью сканирующего электронного микроскопа без накопления электронных зарядов. Это открытие позволило использовать ионную жидкость в качестве материала для обеспечения электропроводности диэлектрических образцов вместо углеродного или металлического покрытия.

Ионные жидкости (WW) низкотемпературные расплавы органических солей, состоящие из объемных органических катионов и неорганических или органических анионов. Синтез ионных жидкостей включает в себя стадию формирования катиона и обмена аниона. Природа аниона влияет на следующие свойства ионных жидкостей: температуру плавления, термическую и электрохимическую стабильность, вязкость. Полярность, гидрофильность и гидрофобность ионных жидкостей можно оптимизировать путем соответствующего выбора пары катион/анион. Варьируя природой катиона и аниона, можем синтезировать ионные жидкости с заданными свойствами [4]. В итоге, ионные жидкости обладают множеством преимуществ: относительно высокой ионной проводимостью, благоприятной термической электрохимической стабильностью, незначительным давлением паров и антистатической природой.

На сегодняшний день в научной литературе описаны более двух тысяч ИЖ, химические и физические свойства которых отличаются богатством и своеобразием. Среди них особо выделяют жидкие при комнатной температуре (ИЖКТ, RTIL – room-temperature ionic liquids) [5]. Ионные жидкости комнатной температуры являются примером новых решений для практического применения. Благодаря уникальному набору свойств ионные полезных жидкости активно используются аналитической химии, электрохимии, химической инженерии, фармакологии, материаловедении [5-13]. Кроме того, появились научные работы по применению ИЖ в электронной микроскопии для наблюдения биологических объектов и микроорганизмов [14-18]. В этих исследованиях представлен новый протокол подготовки биологических образцов для сканирующей электронной микроскопии с использованием обработки ионной жидкостью при комнатной температуре. Растворы на основе ИЖ могут быть приняты в качестве альтернативы длительным и трудоемким традиционным способам подготовки для СЭМ из-за их уникальных низкопаровых и проводящих свойств. Авторами [19, 20] изучена возможность применения в СЭМ ионных жидкостей в качестве токопроводящих покрытий для диэлектрических образцов, таких как, пьезоэлектрическая керамика, минералы, микросхемы на диэлектрических подложках. Показано, что подобные покрытия могут служить эффективным средством для предотвращения накопления электрических зарядов на непроводящих образцах, что необходимо для качественного проведения электронно-микроскопических исследований.

Целью данной работы является поиск новых путей пробоподготовки образцов для электронной микроскопии, развитие метода ИЖ для СЭМ, расширение спектра изучаемых образцов и ионных жидкостей.

2. Объекты и методы исследования

В настоящей работе были синтезированы ионные жидкости на основе дицианамидов N -алкилпиридиния. Дицианамиды N -бутил- и N - децилпиридиния были получены по реакции метатезиса из соответствующего бромида N -алкилпиридиния и дицианамида серебра (см. рис. 1). Структура всех синтезированных соединений была подтверждена с помощью ИК-спектроскопии.

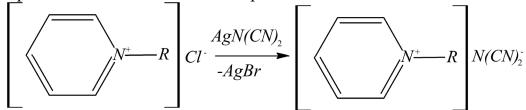


Рис. 1. Схема синтеза ИЖ, где $R: C_4H_9, C_{10}H_{21}$.

В плоскодонной колбе емкостью 100 мл растворяли в минимальном количестве воды 0,01 моль бромида N -алкилпиридиния. Затем добавили эквимолярное количество свежеполученного и высушенного дицианамида серебра $(AgN(CN)_2)$. Смесь перемешивали в течение 24 ч. на магнитной мешалке при комнатной температуре в темноте. По окончании реакции осадок был отделен, а фильтрат выпарен на роторном испарителе, высушен в вакууме в течение 48 ч. Полученные соединения жидкости при комнатной температуре имеют светло-желтый цвет, хорошо растворимы в воде и полярных органических растворителях.

Электронно-микроскопические исследования проводились на микроскопе JEOL 6610LW с аналитической приставкой энергодисперсионного анализа Oxford INCA Energy 350. Визуализация объектов осуществлялась в режиме вторичных и отраженных электронов при ускоряющем напряжении 15 кВ, а также в режиме низкого вакуума (97 Па) при 15-25 кВ. Для создания проводящего тонкого слоя металла (Pt) на поверхности диэлектриков была использована вакуумная установка

магнетронного напыления JFC-1600 (JEOL).

Объекты исследования – биологические образцы, пробы горных пород (керн), образцы сегнетокерамики, порошки диэлектрических материалов, кристаллические материалы, стекловолокно.

3. Экспериментальные результаты и обсуждение

Поверхность образцов обрабатывали 10% раствором ионной жидкости в ацетоне, время обработки составляло 1-2 минуты, после чего образцы подвергали быстрой сушке на воздухе с испарением растворителя, затем крепили на токопроводящий скотч, чтобы обеспечить электрический контакт образца со столиком прибора, помещали в камеру микроскопа и проводили съемку микроструктуры поверхности. В ходе исследований проводился сравнительный анализ СЭМ-изображений образцов с ИЖ покрытием и металлическим напылением.

На рис. 2 представлены СЭМ-изображения порошка диоксида теллура (парателлурита TeO_2), полученные с помощью напыления тонкого слоя платины (а) и нанесения ионной жидкости (б). Парателлурит — диэлектрический кристаллический материал, получаемый из расплава способом Чохральского, широко применяется в акустооптике и лазерной технике. Микроскопические исследования как самих кристаллов, так и порошка, из которого эти кристаллы выращивают, позволяют определить морфологические особенности, наличие примесей и дефектность образцов. Как правило, для визуализации в СЭМ на образцы парателлурита наносят металлические покрытия благородных металлов или проводят ионспаттерное нанесение алюминия, хрома, кобальта, меди и др. металлов.

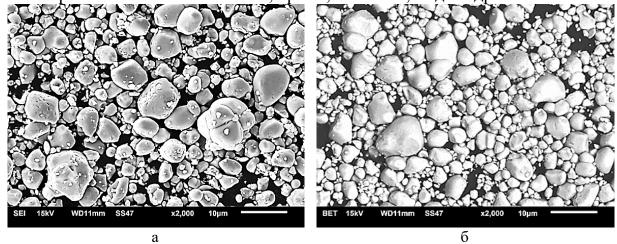


Рис. 2 СЭМ-изображение порошка парателлурита: a-c металлическим напылением, 6- метод ИЖ.

Из рис. 2 хорошо видно, что СЭМ-изображения порошка диоксида теллура, обработанного электропроводной ионной жидкостью, носят

качественный и информативный характер.

Пробоподготовка сколов и изломов различных кристаллических материалов, а также объектов со сложным рельефом методом ионной жидкости дает хороший результат, сравнимый с традиционными способами обработки образцов. В случае гладких полированных поверхностей лучший результат дают меньшие концентрации ионной жидкости. Значения толщины слоя ИЖ коррелируют с толщиной единичного слоя напыляемого металла (25-35 нм), что подтверждается данными атомно-силовой микроскопии.

Известно, что режим низкого вакуума в СЭМ позволяет получать качественные изображения диэлектриков без специальной подготовки в сигнале отраженных электронов, но имеет ряд ограничений: ухудшение больших увеличениях, разрешающей способности при отсутствие возможности работать в сигнале вторичных электронов, а значит, отсутствие топографического контраста. Хорошей альтернативой здесь является использование метода ИЖ, который позволяет фиксировать как топографический, так и композиционный контраст объектов, изучаемых в СЭМ. На рис. 3 представлены СЭМ-изображения образцов керна, которые имеют сложный рельеф и неоднородны по химическому составу. Как в таких случаях на образцы наносят углеродное или металлическое напыление, используя дополнительное дорогостоящее оборудование. Эксперименты применением ИЖ-покрытия демонстрируют хорошее качество изображений, а также не нарушают композиционный контраст, что является важным для проведения энергодисперсионного анализа.

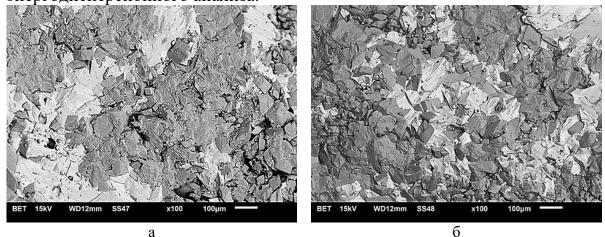


Рис. 3. СЭМ-изображение керновой породы: а – режим низкого вакуума, б –метод ИЖ.

Изучение влияния агрессивных сред на стеклокомпозиты обычно сопровождается электронно-микроскопическими исследованиями микро- и наноструктуры образцов. Образцы из стеклопластика и стеклокомпозитов,

обычно быстро накапливают поверхностный статический заряд в камере микроскопа, что приводит к дефокусировке образца. СЭМ-изображения полиэфирных стеклопластиковых образцов и полиамидных фибридов демонстрируют возможность применения метода ионной жидкости для химических волокон, а также других объектов, имеющих гладкие непроводящие поверхности (см. рис. 4).

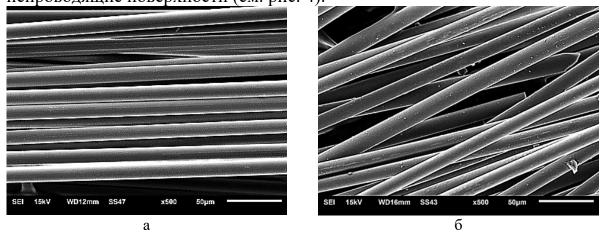


Рис. 4. СЭМ-изображение волокна полигексаметилен изофталамида: a — напыление Pt, 6 — метод ИЖ.

Одним из главных применений ИЖ-покрытий, конечно, являются объекты биологического происхождения. Именно с этих образцов начались эксперименты по применению ИЖ в электронной микроскопии. Метод ИЖ был применен для обработки звездообразных ракушек, что позволило значительно снизить эффекты зарядки в СЭМ [3]. Авторами был использован простой метод погружения образца в ИЖ, затем избыточная жидкость удалялась, что позволяло эффективно и четко отображать особенности микроструктуры ракушки. Нами были проведены эксперименты обработке ионной жилкостью насекомых. микроорганизмов, растительных фрагментов. В отличие пробоподготовка заключалась в нанесении раствора ИЖ в ацетоне на поверхности образцов и кратковременной сушке (1-3 мин). На рисунке 5 представлены СЭМ-изображение лепестка растения, полученные в режиме низкого вакуума (а) и с помощью метода ИЖ (б). В данном случае использование ионной жидкости дает лучший результат, выявляя тонкую Практически все биологические лепестка. обработанные в ИЖ, визуализируются в электронном микроскопе в отличном качестве как в сигналах вторичных, так и отраженных электронов.

Необходимо отметить, что морфология биологических образцов при сушке может претерпевать изменения. В случае влажных объектов исследования также может быть применен метод ионной жидкости,

подобные эксперименты были проведены авторами в [16,18]. Более того, был сделан вывод, что обработка ИЖ лучше сохраняет естественную микро- и наноструктуру некоторых биоматериалов, что приводит к минимальному изменению микроморфологии исследуемых в СЭМ объектов, по сравнению с традиционными схемами подготовки, включающими дегидратацию.

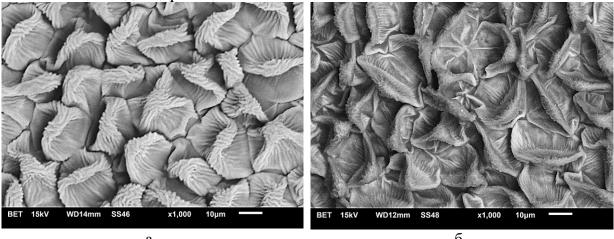


Рис. 5. СЭМ-изображение лепестка: а – напыление Pt, б – метод ИЖ.

4. Заключение

В статье описаны ионные жидкости на основе дицианамидов N - алкилпиридиния, которые позволяют уменьшить накопление зарядов на поверхности непроводящих образцов, что способствует получению качественных изображений микро- и наноструктуры поверхности диэлектрических образцов в сканирующей электронной микроскопии. В работе проведены исследования биологических материалов, образцов горных пород, функциональных материалов, таких как стекловолокно, кристаллы-диэлектрики

Экспериментальные исследования позволяют сделать вывод, что альтернативой ИЖ является длительным трудоемким метод традиционным способам подготовки диэлектриков для СЭМ и может быть использован для визуализации непроводящих объектов без дегидратации или металлического покрытия. Применение ИЖ вместо металлических и обеспечивает покрытий сравнимое углеродных традиционными подготовки образцов разрешение, топографический методами композиционный контраст. Метод нанесения ионной жидкости диэлектрики приводит к увеличению проводимости образца, работает в режимах вторичных и отраженных электронов, прост в использовании, не требует дорогостоящего оборудования, позволяет получать однородные покрытия на образцах со сложным рельефом.

Проведенные в настоящей работе эксперименты по применению

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

ионной жидкости в качестве токопроводящего покрытия для диэлектрических образцов, способствуют развитию новых идей и подходов в электронной микроскопии и материаловедении.

Данная работа выполнена на оборудовании научно-исследовательской лаборатории электронной микроскопии ЦКП Тверского государственного университета. Синтез ионной жидкости проведен в лаборатории органической химии химико-технологического факультета ТвГУ. Исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации в рамках выполнения государственного задания в сфере научной деятельности (проект № 0817-2023-0006).

Библиографический список:

- 1. **Goldstein, J.I.** Scanning electron microscopy and X-ray microanalysis / J.I Goldstein, D.E. Newbury, J.R. Michael et al.; 4th ed. New York: Springer, 2018. XXIII, 550 p. DOI:10.1007/978-1-4939-6676-9.
- 2. **Зеер, Г.М.** Применение сканирующей электронной микроскопии в решении актуальных проблем материаловедения / Г.М. Зеер, О.Ю. Фоменко, О.Н. Ледяева // Журнал Сибирского Федерального университета. Химия. -2009. Т. 2. № 4. Р. 287-293.
- 3. **Kuwabata**, S. Observation of ionic liquid by scanning electron microscope / S. Kuwabata, A. Kongkanand, D. Oyamatsu, T. Torimoto // Chemistry Letters. 2006. V. 35. I. 6. P. 600-601. DOI: 10.1246/cl.2006.600.
- 4. **Выгодский, Я.С.** Синтез полимеров в ионных жидкостях / Я.С. Выгодский, Е.И. Лозинская, А.С. Шаплов // Российский химический журнал. -2004. Т. XLVIII. №. 6. С. 40-50.
- 5. **Плетнев, И.В.** Новые направления применения ионных жидкостей в аналитической химии. 1. Жидкостная экстракция / И.В. Плетнев, С.В. Смирнова, Н.В. Шведене // Журнал аналитической химии. − 2019. - Т. 74. - № 7. - С. 483-526. DOI: 10.1134/S0044450219070077.
- 6. **Tiago, G.A**. Application of ionic liquids in electrochemistry recent advances / G.A. Tiago, I.A. Matias, A.P. Ribeiro, L.M. Martins // Molecules. 2020. V. 25. I. 24. Art. no. 5812. 27 p. DOI: 10.3390/molecules25245812.
- 7. **Song, M.H.** Ionic liquid-assisted cellulose coating of chitosan hydrogel beads and their application as drug carriers / M.H. Song, T.P. Pham, Y.S. Yun // Scientific Reports. 2020. V. 10. I. 1. Art. № 13905. 8 p. DOI: 10.1038/s41598-020-70900-7.
- 8. Lei, Z. Introduction: Ionic liquids / Z. Lei, B. Chen, Y.M. Koo, D.R. MacFarlane // Chemical Reviews. 2017. V. 117. I. 10. P. 6633-6635. DOI: 10.1021/acs.chemrev.7b00246.
- 9. **Singh, S.K.** Ionic liquids synthesis and applications: An overview / S.K. Singh, A.W. Savoy // Journal of Molecular Liquids. 2020. V. 297. Art. № 112038. 62 p. DOI: 10.1016/j.molliq.2019.112038.
- 10. **Armand, M.** Ionic-liquid materials for the electrochemical challenges of the future / M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati // Nature Materials. 2009. V. 8. I. 8. P. 621-629. DOI: 10.1038/nmat2448.
- 11. **Abbott, A.P.** Why use ionic liquids for electrodeposition? / A.P. Abbott, F. Endres, D.R. Macfarlane // In book: Electrodeposition from ionic liquids. Weinheim: Wiley-VCH Verlag GmbH & Co, 2017. Ch. 1. P. 1-15. DOI: 10.1002/9783527682706.ch1.
- 12. Roosen, C. Ionic liquids in biotechnology: applications and perspectives for biotransformations / C. Roosen, P. Müller, L. Greiner // Applied Microbiology and Biotechnology. 2008. V. 81. P. 607-614. DOI: 10.1007/s00253-008-1730-9.
- 13. **Chagas, L.G.** Ionic liquid-based electrolytes for sodium-ion batteries: tuning properties to enhance the electrochemical performance of manganese-based layered oxide cathode / L.G. Chagas, S. Jeong, I. Hasa, S. Passerini // ACS Applied Materials & Interfaces. 2019. V. 11. I. 25. P. 22278-22289. DOI: 10.1021/acsami.9b03813.
- 14. **DiCecco**, **L.A.** Electron microscopy imaging applications of room temperature ionic liquids in the biological field: A review / L.A. DiCecco, A. D'Elia, C. Miller, K.N. Sask, L. Soleymani, K. Grandfield // ChemBioChem. 2021. V. 22. I. 15. P. 2488-2506. DOI: 10.1002/cbic.202100041.
- 15. **Arimoto, S.** Development of new techniques for scanning electron microscope observation using ionic liquid / S. Arimoto, M. Sugimura, H. Kageyama, T. Torimoto, S. Kuwabata // Electrochimica Acta. 2008. V. 53. I. 21. P. 6228-6234. DOI: 10.1016/j.electacta.2008.01.001.

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

- 16. **DiCecco, L.A.** Ionic liquid treatment for efficient sample preparation of hydrated bone for scanning electron microscopy / L.A. DiCecco, A. D'Elia, C. Quenneville, L. Soleymani, K. Grandfield // Micron. 2022. V. 153. Art. № 103192. 9 p. DOI: 10.1016/j.micron.2021.103192.
- 17. **Asahi, Y.** Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids / Y. Asahi, J. Miura, T. Tsuda et al. // AMB Express. -2015. V. 5. Art. N_{\odot} 6. 9 p. DOI: 10.1186/s13568-015-0097-4.
- 18. **Tsuda**, **T.** SEM observation of wet biological specimens pretreated with room-temperature ionic liquid / T. Tsuda, N. Nemoto, K Kawakami, E. Mochizuki et al. // ChemBioChem. 2011. V. 12. I. 17. P. 2547-2550. DOI: 10.1002/cbic.201100476.
- 19. **Zhuravlev, O.E.** Preparation of samples for SEM studies using an ionic liquid / O.E. Zhuravlev, A.I. Ivanova, R.M. Grechishkin // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2015. V. 9. I. 5.– P. 904-907. DOI: 10.1134/S1027451015050213.
- 20. Пат. 2557179 Российская Федерация, МПК G01N 1/28, H01J 37/256, C23C 26/00. Способ подготовки диэлектрического образца для исследования на растровом электронном микроскопе / Журавлев О.Е., Иванова А.И., Гречишкин Р.М.; заявитель и патентообладатель ФГБОУ ВО «Тверской государственный университет». № 2014107757/02, заявл. 28.02.2014; опубл. 20.07.2015, Бюл. № 20. 6 с.

References:

- 1. Goldstein J.I., Newbury D.E., Michael J.R. et al. *Scanning electron microscopy and X-ray microanalysis*, 4th ed.. New York, Springer, 2018. XXIII, 550 p. DOI.:10.1007/978-1-4939-6676-9.
- 2. Zeer G.M., Fomenko O.Yu., Ledyaeva O.N. Primenenie skaniruyushchej elektronnoj mikroskopii v reshenii aktual'nykh problem materialovedeniya [Application of scanning electron microscopy in material science], *Zhurnal Sibirskogo Federal'nogo universiteta. Khimiya*, [Journal of the Siberian Federal University. Chemistry], 2009, vol. 2, issue 4, pp. 287-293. (In Russian).
- 3. Kuwabata S., Kongkanand A., Oyamatsu D., Torimoto T. Observation of ionic liquid by scanning electron microscope, *Chemistry Letters*, 2006, vol. 35, issue 6, pp. 600-601. DOI: 10.1246/cl.2006.600.
- 4. Vygodskii Ya.S., Lozinskaya E.I., Shaplov A.S. Sintez polimerov v ionnykh zhidkostyakh [Synthesis of polymers in ionic liquids], *Rossijskij khimicheskij zhurnal, [Russian Chemical Journal]*, 2004, vol. XLVIII, no. 6, pp. 40-50. (In Russian).
- 5. Pletnev I.V., Smirnova S.V., Shvedene N.V. New directions in using ionic liquids in analytical chemistry. 1: Liquid–liquid extraction, *Journal of Analytical Chemistry*, 2019, vol. 74, issue 7, pp. 625-658. DOI: 10.1134/S1061934819070062.
- 6. Tiago G.A., Matias I.A., Ribeiro A.P., Martins L.M. Application of ionic liquids in electrochemistry recent advances, *Molecules*, 2020, vol. 25, issue 24, art. no. 5812, 27 p. DOI: 10.3390/molecules25245812.
- 7. Song M.H., Pham T.P.T., Yun Y.S. Ionic liquid-assisted cellulose coating of chitosan hydrogel beads and their application as drug carriers, *Scientific Reports*, 2020, vol. 10, issue 1, art. no. 13905, 8 p. DOI: 10.1038/s41598-020-70900-7.
- 8. Lei Z., Chen B., Koo Y.M., MacFarlane D.R. Introduction: Ionic liquids, *Chemical Reviews*, 2017, vol. 117, issue 10, pp. 6633-6635. DOI: 10.1021/acs.chemrev.7b00246.
- 9. Sing S.K., Savoy A.W. Ionic liquids synthesis and applications: An overview, *Journal of Molecular Liquids*. 2020, vol. 297, art. no. 112038, 62 p. DOI: 10.1016/j.molliq.2019.112038.
- 10. Armand M., Endres, F., MacFarlane D.R., Ohno H., Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future, *Nature Materials*, 2009, vol. 8, issue 8, pp. 621-629. DOI:10.1038/nmat2448.
- 11. Abbott A.P., Endres F., Macfarlane D.R. Why use ionic liquids for electrodeposition?, *Electrodeposition from ionic liquids*. Weinheim, Wiley-VCH Verlag GmbH & Co, 2017, pp. 1-15. DOI: 10.1002/9783527682706.ch1.
- 12. Roosen C., Müller P., Greiner L. Ionic liquids in biotechnology: applications and perspectives for biotransformations, *Applied Microbiology and Biotechnology*, 2008, vol. 81, pp. 607-614. DOI: 10.1007/s00253-008-1730-9.
- 13. Chagas L.G., Jeong S., Hasa I., Passerini S. Ionic liquid-based electrolytes for sodium-ion batteries: tuning properties to enhance the electrochemical performance of manganese-based layered oxide cathode, *ACS Applied Materials & Interfaces*, 2019, vol. 11, issue 25, pp. 22278-22289. DOI: 10.1021/acsami.9b03813.
- 14. DiCecco L.A., D'Elia A., Miller C., Sask K.N. et al. Electron microscopy imaging applications of room temperature ionic liquids in the biological field: A review, *ChemBioChem*, 2021, vol. 22, issue 15, pp. 2488-2506. DOI: 10.1002/cbic.202100041.
- 15. Arimoto S., Sugimura M., Kageyama H., Torimoto T., Kuwabata S. Development of new techniques for scanning electron microscope observation using ionic liquid, *Electrochimica Acta*, 2008, vol. 53, issue 21,

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

pp. 6228-6234. DOI: 10.1016/j.electacta.2008.01.001.

- 16 DiCecco L.A., D'Elia A., Quenneville C., Soleymani L., Grandfield K. Ionic liquid treatment for efficient sample preparation of hydrated bone for scanning electron microscopy, *Micron*, 2022, vol. 153, art. no. 103192, 9 p. DOI: 10.1016/j.micron.2021.103192.
- 17. Asahi Y., Miura J., Tsuda T. et al. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids, *AMB Express*, 2015, vol. 5, art. no. 6, 9 p. DOI: 10.1186/s13568-015-0097-4.
- 18. Tsuda T., Nemoto N., Kawakami K., Mochizuki E. et al. SEM Observation of wet biological specimens pretreated with room-temperature ionic liquid, *ChemBioChem*, 2011, vol. 12, issue 17, pp. 2547-2550. DOI: 10.1002/cbic.201100476.
- 19. Zhuravlev O.E., Ivanova A.I., Grechishkin R.M. Preparation of samples for SEM studies using an ionic liquid, *Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques*, 2015, vol. 9, issue 5, pp. 904-907. DOI: 10.1134/S1027451015050213.
- 20. Zhuravlev O.E., Ivanova A.I., Grechishkin R.M. Sposob podgotovki dielektricheskogo obraztsa dlya issledovaniya na rastrovom elektronnom mikroskope [A method for preparing a dielectric sample for examination on a scanning electron microscope]. Patent RF, no. 2557179, 2015. (In Russian).

Original paper

Application of ionic liquids in scanning electron microscopy studies of dielectric microstructure A.I. Ivanova, A.V. Dudilovskaya, O.E. Zhuravlev, A.D. Kaftanov

Tver State University, Tver, Russia

DOI: 10.26456/pcascnn/2024.16.154

Abstract: This article presents the results of studying non-conducting biological, crystalline objects, powders, and glass composite samples using an ionic liquid by scanning electron microscopy. Ionic liquids based on alkylpyridinium dicyanamides studied in the work were obtained by a metathesis reaction. A solution of ionic liquid in acetone was used as a conductive coating for dielectrics. It was found that the use of ionic liquid is an alternative to the methods of metal and carbon sputtering on dielectric samples. Scanning electron microscopy images of samples obtained by such microscopy methods as low vacuum mode, the use of metal sputtering (*Pt*) on samples, and a study of samples without a conductive coating are presented. A comparative analysis of the results obtained by traditional methods and the method of applying ionic liquid to samples is carried out. It is shown that the use of electrically conductive ionic liquids with the thermal and chemical stability makes it possible to obtain high-resolution electron microscopic images and also allows visualization of the topographic and compositional contrast of the studied dielectric samples.

Keywords: ionic liquid, sample preparation, dielectric samples, surface microstructure, scanning electron microscopy

Иванова Александра Ивановна — к.ф.-м.н., доцент кафедры прикладной физики ФГБОУ ВО «Тверской государственный университет»

Дудиловская Александра Валерьевна — студентка 4 курса физико-технического факультета ФГБОУ ВО «Тверской государственный университет»

Журавлев Олег Евгеньевич — к.х.н., доцент кафедры органической химии ФГБОУ ВО «Тверской государственный университет»

Кафтанов Арсений Дмитриевич – аспирант 4 года обучения, химико-технологический факультет, ФГБОУ ВО «Тверской государственный университет»

Alexandra I. Ivanova – Ph. D., Docent, Applied Physic Department, Tver State University
Aleksandra V. Dudilovskaya – 4th year student, Physical-Technical Faculty, Tver State University
Oleg E. Zhuravlev – Ph. D., Docent Organic Chemistry Department, Tver State University
Arseniy D. Kaphtanov – 4th year postgraduate student, Chemical-Technological Faculty, Tver State University

Поступила в редакцию/received: 04.09.2024; после рецензирования/revised: 04.10.24; принята/accepted: 06.10.2024.