УДК 538.956 Оригинальная статья

Влияние примеси Ві на электрофизические свойства твердых растворов ниобата натрия

Е.В. Барабанова, Н.М. Оспельников, А.И. Иванова ФГБОУ ВО «Тверской государственный университет» 170100, Россия, Тверь, ул. Желябова, 33 pechenkin kat@mail.ru

DOI: 10.26456/pcascnn/2024.16.033

Аннотация. Введение легирующих примесей является классическим способом модификации свойств материалов, в частности, сложных оксидов семейства перовскита с общей формулой ABO_3 . Замещаются ионы, находящиеся в позициях A и/или B. При этом валентность их может совпадать с валентностью основного иона (изовалентное замещение) или отличаться (гетеровалентное замещение). Ниобат натрия $(NaNbO_3)$ является удобной основой для создания сегнетоэлектрических твердых растворов. При легировании его свойства варьируются в широком диапазоне, позволяя создавать функциональные материалы для различных приложений. В работе проведено исследование влияния примеси висмута Bi^{3+} при замещении иона ниобия Nb^{5+} на структуру и электрофизические свойства ниобата натрия. Показано, что для таких составов характерно значительное увеличение электропроводности с ростом концентрации примеси, понижение температуры Кюри и изменение зеренной структуры. Концентрация примеси более 10 мол.% приводит к формированию вторичных фаз.

Ключевые слова: ионная проводимость, сегнетоэлектрические твердые растворы, ниобат натрия, диэлектрическая проницаемость.

1. Введение

Среди сегнетоэлектрических материалов наиболее распространены материалы со структурой перовскита. Это сложные оксиды с общей формулой ABO_3 , где позиции A и B занимают металлы. Путем замещения основных ионов примесными раздельно или сразу по обеим позициям можно менять свойства сегнетоэлектриков в широком диапазоне. Это реализовано при создании такого промышленно важного материала как $PbTi_{1-x}Zr_xO_3$ (ЦТС) и систем на его основе. Их недостатком является использование в производстве токсичных соединений, содержащих свинец [1]. Бессвинцовым аналогом ЦТС являются системы на основе ниобатов щелочных металлов, например на основе ниобата натрия $(NaNbO_3)$. Данный материал проявляет как сегнетоэлектрические, так И антисегнетоэлектрические свойства зависимости В внешних воздействий и условий получения [2, 3]. Большое число фазовых переходов [4-6], совместимость с тканями организма человека, низкая плотность диэлектрическая проницаемость, высокие значения пьезоэлектрических, электрооптических параметров систем на основе ниобата натрия создают условия для их практического применения. Вместе с тем, еще не до конца ясны механизмы влияния модификаторов на

конечные свойства твердых растворов на основе ниобата натрия, особенно при гетеровалентном замещении [7, 8]. В связи с чем, дальнейшие исследования легированной керамики ниобата натрия являются актуальными.

2. Объекты исследований

В качестве объектов исследования была выбрана керамика ниобата натрия ($NaNbO_3 - NN$) и ее твердый раствор с висмутом (NNB). В качестве исходных компонентов использовали Na_2CO_3 , Nb_2O_5 и Bi_2O_3 . Легирование проводилось путем замещения ниобия в позиции B на висмут в количестве $10 (NaNb_{0.9}Bi_{0.1}O_{3-\delta} - NNB0,1)$ и 20 мол.% ($NaNb_{0.8}Bi_{0.2}O_{3-\delta} - NNB0,2$). Смешение исходных компонентов проводилось В среде этилового Предварительно спрессованная шихта подвергалась высокотемпературному отжигу (синтез) в муфельной печи при 700°C в Синтезированный часов. материал после измельчения прессовали в заготовки в форме диска и спекали при 1100°C в течение 4 часов. Получившиеся образцы имели диаметр 10 мм и толщину 1,5-2 мм. Электроды наносились при помощи серебряной пасты и вжигались в муфельной печи при 450°C.

3. Методика исследований

Исследование структуры керамики проводилось при помощи растрового электронного микроскопа (РЭМ) JEOL 6610 LV в режиме вторичных электронов. Методом диэлектрической спектроскопии были исследованы электрофизические свойства спеченных образцов. Для этого измерялся тангенс угла диэлектрических потерь и ёмкость образцов на фазочувствительном измерителе Вектор-175 в диапазоне температур 30-650°С и на частотах $1-10^6$ Гц. По полученным данным определялась комплексная диэлектрическая проницаемость и удельная проводимость составов.

4. Результаты исследования структуры и электрофизических свойств твердых растворов $NaNb_{1-x}Bi_xO_{3-\delta}$ (x=0;0,1;0,2)

Микроструктура керамики нелегированного ниобата натрия представляет собой неплотную упаковку однородных сферических зерен с большим числом пор (см. рис. 1 а). Средний размер зерен составляет 1,5-2 мкм. При легировании висмутом форма зерен меняется на кубическую и плотность наблюдается достаточно высокая упаковки, присутствуют поры, сравнимые с размерами зёрен. Добавление 10 мол.% примеси висмута приводит к значительной неоднородности зеренного средний размер зерен колеблется в диапазоне состава, 1-30 мкм (см. рис. 1 б). Для образца *NNB*0,2 зерна имеют размер значительно меньший (0,25-3 мкм) и более однородный (см. рис. 1 в). Однако на РЭМ изображениях в этом случае можно наблюдать вторую фазу в виде крупных (5-50 мкм) произвольной формы образований. Они соответствуют по химическому составу ниобату висмута. Таким образом, предел растворимости висмута в ниобате натрия лежит в диапазоне концентраций 10-20 мол.%.

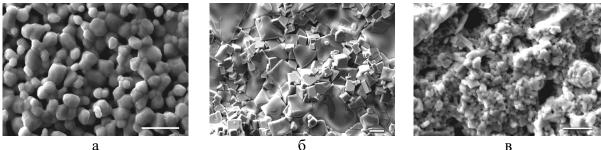


Рис. 1. РЭМ изображения структуры керамики NN (a), NNB0,1 (б), NNB0,2 (в). Масштабная метка 5 мкм (а, в) и 10 мкм (б).

Вид температурной зависимости действительной части комплексной диэлектрической проницаемости ε' у всех исследованных образцов меняется с частотой внешнего электрического поля (см. рис. 2). Так в области низких частот (максимальная частота этого диапазона зависит от состава керамики) максимумов на зависимости $\varepsilon'(T)$ не наблюдается.

Известно [5-6], что фазовый переход из сегнетоэлектрической в параэлектрическую фазу в ниобате натрия должен происходить при температуре 640-650°С. В нашем эксперименте это предельно возможная для измерения температура, поэтому фазовый переход зафиксировать не удалось. Кроме основного фазового перехода в керамике ниобата натрия существует до 6 промежуточных фазовых переходов. Наши исследования показали, что локальный максимум диэлектрической проницаемости наблюдается у образца NN при 400°С, начиная с частоты измерительного поля 10 кГц. Его положение не зависит от частоты. Стоит отметить, что согласно некоторым литературным данным [9, 10] сегнетоэлектрические свойства ниобата натрия могут проявляться ниже данной температуры, а при более высоких температурах наблюдаются только фазовые переходы из одного параэлектрического состояния в другое. Таким образом, этот фазовый переход можно считать сегнетоэлектрическим.

Керамика *NNB*0,1 имеет максимум диэлектрической проницаемости при более низкой температуре (260°С), который на частотах выше 145 Гц также не зависит от частоты (см. рис. 2 б). На частотах ниже 145 Гц после максимума наблюдается резкий рост диэлектрической проницаемости, при этом, чем ниже частота, тем интенсивнее рост. Ранее было показано, что выше температуры фазового перехода выполняется закон Кюри-Вейсса,

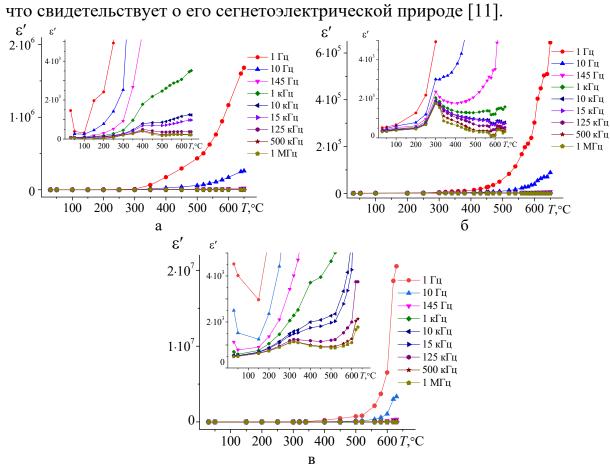


Рис. 2. Температурная зависимость диэлектрической проницаемости для образцов: a-NN, $\delta-NNB0,1$, B-NNB0,2 в диапазоне частот от 1 до 10^6 Гц.

Для состава *NNB*0,2 наблюдается более сложная зависимость $\varepsilon'(T)$ от частоты (см. рис. 2 в). Также как у состава с 10 мол.% висмута максимум на частотах выше 100 кГц наблюдается при 300°C. Но при понижении частоты он сильно размывается, смещаясь к температуре 400°C, и затем исчезает. Такое поведение, скорее всего, обусловлено присутствием второй фазы в данном образце.

Для всех исследованных образцов комплексная диэлектрическая проницаемость растет с уменьшением частоты и увеличением температуры, достигая очень больших значений $(10^6 \text{--} 10^7)$, что может говорить о значительной роли миграционной поляризации в данных материалах.

В связи с тем, что валентность катиона висмута Bi^{3+} , а ниобия Nb^{5+} , то висмут выступает в качестве акцепторной замещающей примеси. Это приводит к созданию дефектов в кристаллической структуре легированной керамики, таких как кислородные вакансии [12]. Поэтому в работе также были исследованы температурная и частотная зависимости электропроводности образцов. Как видно на рис. 3 электропроводность

растет с увеличением частоты и температуры. В общем случае, согласно универсальному фрактально-степенному закону [13], проводимость в переменных полях представляет из себя сумму двух слагаемых: проводимости на постоянном токе σ_{dc} и поляризационной составляющей проводимости, т.е. описывается уравнением

$$\sigma(\omega) = \sigma_{dc} + C\omega^n, \tag{1}$$

где параметры C и n, как и σ_{dc} , зависят от T.

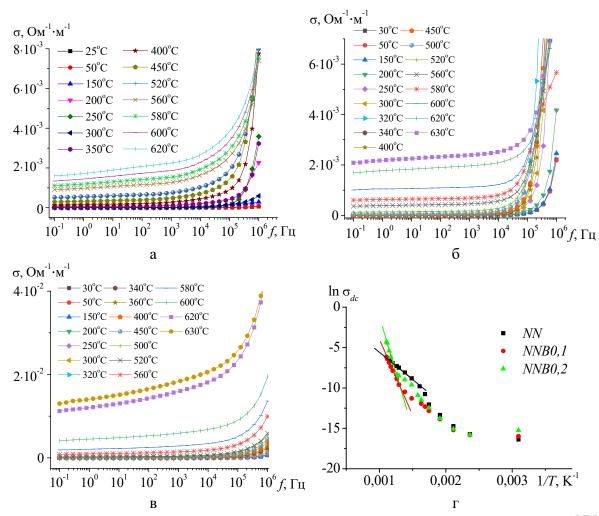


Рис. 3. Частотная зависимость проводимости при различных температурах: $a-для\ NN$, 6-NNB0,1, B-NNB0,2 и $\Gamma-$ зависимость проводимости на постоянном токе от 1/T для всех исследуемых составов.

Для всех образцов на зависимости $\sigma(\omega)$ можно выделить два участка: область слабой частотной дисперсии и значительный рост σ после преодоления отметки частоты $10^4\text{-}10^5\,\Gamma$ ц. Что может служить свидетельством о смене механизма проводимости, обусловленной поляризационными процессами, при изменении частоты.

Путем экстраполяции графиков $\sigma(\omega)$ к пределу $\omega \to 0$ из данных экспериментальных зависимостей было определено значение σ_{dc} при

различных температурах. Величина проводимости на постоянном токе на порядок величины больше у состава NNB0,2, чем у других образцов. Стоит отметить, что температурная зависимость σ_{dc} имеет сложный характер. Если построить график зависимости $\ln[\sigma_{dc}](1/T)$ для проверки выполнения закона Аррениуса

$$\sigma_{dc} = \sigma_0 \exp(-E_a/kT) \tag{2}$$

(здесь σ_0 — предэкспоненциальный множитель, E_a — энергия активации проводимости на постоянном токе, k — постоянная Больцмана), то получится, что линейный участок, а следовательно и экспоненциальная зависимость проводимости на постоянном токе от температуры, наблюдается только в области высоких температур более 400-500°C (см. рис. 3 г).

Для этих температурных интервалов, исходя из формулы (2), была определена энергия активации проводимости на постоянном токе E_a . Для наших составов она принимает следующие значения соответственно для NN, NNB0,1, NNB0,2: $E_a=0,6$ эВ, $E_a=1,6$ эВ, $E_a=2,3$ эВ. Таким образом, получается, что энергия активации увеличивается с ростом проводимости образца. Это принципиально отличает легированные висмутом образцы от ранее исследованных керамик NN с примесью железа [14] и циркония [15], в которых с ростом величины электропроводности ее энергия активации уменьшается.

5. Заключение

Легирование керамики NN висмутом приводит к изменению формы и размера зерен: в составах NNB зерна кубической формы и отличаются значительной неоднородностью по размеру. В чистом NN форма зёрен приближена к сферической. Концентрация примеси более 10 мол.% приводит к образованию вторичных фаз, богатых висмутом. Введение акцепторной Bi^{3+} значительному примеси приводит К диэлектрической проницаемости. Фазовый переход, наблюдаемый в чистом ниобате натрия при 400°C, смещается в область более низких температур (260-300°С). При этом на низких частотах во всех составах экстремумы на зависимости $\varepsilon'(T)$ отсутствуют, что может говорить о значительном вкладе миграционной поляризации и проводимости в диэлектрическую проницаемость. С ростом концентрации примеси увеличивается электропроводность керамики и ее энергия активации.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках Государственной программы в области научноисследовательской деятельности (проект № 0817-2023-0006) с использованием

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

ресурсов Центра коллективного пользования $\Phi \Gamma EOV\ BO\ «Тверской государственный университет» (НИЛ электронной микроскопии).$

Библиографический список:

- 1. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Official Journal of the European Union L 37. 2003. V. 46. P. 19-23.
- 2. **Резниченко**, **Л.А.** Свойства нестехиометрического ниобата натрия / Л.А. Резниченко, Л.А. Шилкина, О.Н. Разумовская и др. // Журнал технической физики. 2002. Т. 72. Вып. 3. С. 43-47.
- 3. **Fritsch, D.** Electronic and optical properties of sodium niobate: a density functional theory study / D. Fritsch // Advances in Materials Science and Engineering. 2018. V. 2018. Art. no. 6416057. 10 p. DOI: 10.1155/2018/6416057.
- 4. **Бондарев, В.С.** Теплофизические свойства керамики ниобата натрия в широкой области температур / В.С. Бондарев, А.В. Карташев, М.В. Горев и др. // Физика твердого тела. 2013. Т. 55. Вып. 4. С. 752-758.
- 5. **Megaw, H.D.** The seven phases of sodium niobate / H.D. Megaw // Ferroelectrics. 1974. V. 7. I. 1. P. 87-89. DOI: 10.1080/00150197408237956.
- 6. **Wood, E.A.** Polymorphism in potassium niobate, sodium niobate, and other ABO₃ compounds / E.A. Wood // Acta Crystallographica. 1951. V. 4. I. 4. P. 353-362. DOI: 10.1107/S0365110X51001112.
- 7. **Vlazan, P.** Exploiting the Bi-doping effect on the properties of NaNbO₃ perovskite-type materials / P. Vlazan, M. Poienar, I. Malaescu et al // Chemical Physics. 2024. V.579. Art. no. 112203. 9 p. DOI: 10.1016/j.chemphys.2024.112203.
- 8. **Zhang, L.** Tunable phase transitions in NaNbO₃ ceramics through bismuth/vacancy modification / L. Zhang, Z. Yan, T. Chen et al // Journal of Materials Chemistry C. 2021. V. 9. I. 12. P. 4289-4299. DOI: 10.1039/d0tc05969b.
- 9. **Малышкина, О.В.** Релаксационные процессы в области структурных фазовых переходов на примере керамики на основе ниобата натрия / О.В. Малышкиина, М. Али, Н.Е. Малышева, К.В. Пацуев // Физика твердого тела. 2022. Т. 64. Вып. 12. С. 1960-1966. DOI: 10.21883/FTT.2022.12.53649.461.
- 10. **Macutkevic, J.** Dielectric properties of NaNbO₃ ceramics / J. Macutkevic, A. Molak, J. Banys // Ferroelectrics. 2015. V. 479. I. 1. P. 48-55. DOI: 10.1080/00150193.2015.1011916.
- 11. **Оспельников, Н.М.** Фазовые переходы в твердых растворах $Na(Nb_{0.9}Me_{0.1})O_{3-\delta}$ (Me=Bi, Fe) / H.М. Оспельников, Е.В. Барабанова // Известия Российской академии наук. Серия физическая. 2023. Т. 87. № 4. С. 546-549. DOI: 10.31857/S0367676522700971.
- 12. **Sirotin, Yu.I.** Fundamentals of crystal physics / Yu.I. Sirotin, M.P. Shaskolskaya; translated by V. Snigirevskaya. M.: Mir Publ., 1982. 654 p.
- 13. **Jonscher**, A.K. Dielectric relaxation in solids / A.K. Jonscher. London: Chelsea Dielectrics Pres, 1983. 396 pp.
- 14. **Барабанова, Е.В.** Электрофизические свойства твердых растворов $NaNb_{1-x}Fe_xO_{3-\delta}$ (x=0;0,1;0,2) / Е.В. Барабанова, Н.М. Оспельников, А.И. Иванова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2020. Вып. 12. С. 16-24. DOI: 10.26456/pcascnn/2020.12.016.
- 15. **Deepanshu, K.** Enhanced ionic conductivity through B-site Zr doping in NaNbO₃ solid electrolytes / K. Deepanshu, Y. Deepak, J. Udeshwari // Journal of Power Sources. 2024. V. 613. Art. № 234948. 11 p. DOI: 10.1016/j.jpowsour.2024.234948.

References:

- 1. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic, *Official Journal of the European Union L 37*, 2003, vol. 46, pp. 19-23.
- 2. Reznichenko L.A. Shilkina L.A, Razumovskaya O.N. et al. Properties of nonstoichiometric sodium niobate, *Technical Physics*, 2002. vol. 47, issue 3, pp. 325–329. DOI: 10.1134/1.1463122.
- 3. Fritsch D. Electronic and optical properties of sodium niobate: a density functional theory study, *Advances in Materials Science and Engineering*, 2018, vol. 2018, art. no. 6416057, 10 p. DOI: 10.1155/2018/6416057.
- 4. Bondarev V.S., Kartashev A.V., Gorev M.V. et al. Thermal and physical properties of sodium niobate ceramics over a wide temperature range, *Physics of the Solid State*, 2013, vol. 55, issue 4, pp. 821-828. DOI: 10.1134/S1063783413040045.
- 5. Megaw H.D. The seven phases of sodium niobate, Ferroelectrics, 1974, vol.7, issue 1, pp. 87-89. DOI:

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

10.1080/00150197408237956.

- 6. Wood E.A. Polymorphism in potassium niobate, sodium niobate, and other AB0₃ compounds, *Acta Crystallographica*, 1951, vol. 4, issue 4, pp. 353-362. DOI: 10.1107/S0365110X51001112.
- 7. Vlazan P., Poienar M., Malaescu I. et al. Exploiting the Bi-doping effect on the properties of NaNbO₃ perovskite-type materials, *Chemical Physics*, 2024, vol. 579, art. no. 112203, 9 p. DOI: 10.1016/j.chemphys.2024.112203.
- 8. Zhang L., Yan Z., Chen T., et al. Tunable phase transitions in NaNbO₃ ceramics through bismuth/vacancy modification, *Journal of Materials Chemistry C*, 2021, vol. 9, issue 12, pp. 4289-4299. DOI: 10.1039/d0tc05969b.
- 9. Malyshkina O.V., Ali M., Malysheva N.E., Patsuev K.V. Relaxation processes in the region of structural phase transitions on the example of ceramics based on sodium niobate, *Physics of the Solid State*, 2022, vol. 64, issue 12, pp. 1929-1934. DOI: 10.21883/PSS.2022.12.54388.461.
- 10. Macutkevic J., Molak A., Banys J. Dielectric properties of NaNbO₃ ceramics, *Ferroelectrics*, 2015, vol. 479, issue 1, pp. 48-55. DOI: 10.1080/00150193.2015.1011916.
- 11. Ospelnikov N.M., Barabanova E.V. Phase transitions in Na(Nb_{0.9}Me_{0.1})O_{3- δ} (Me=Bi, Fe) solid solutions, *Bulletin of the Russian Academy of Sciences: Physics*, 2023, vol. 87, issue 4, pp. 473-476. DOI: 10.3103/S1062873822701489.
- 12. Sirotin Yu.I., Shaskolskaya M.P. Fundamentals of crystal physics, Moscow, Mir Publ., 1982, 654 p.
- 13. Jonscher A.K. Dielectric relaxation in solids, London, Chelsea Dielectrics Press, 1983, 396 p.
- 14. Barabanova E.V., Ospelnikov N.M, Ivanova A.I. Elektrofizicheskie svojstva tverdykh rastvorov $NaNb_{1-x}Fe_xO_{3-\delta}$ (x=0;0,1;0,2) [Electrophysical properties of solid solutions $NaNb_{1-x}Fe_xO_{3-\delta}$ (x=0;0,1;0,2)] Электрофизические свойства твердых растворов, *Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials*], 2020, issue 12, pp. 16-24. DOI: 10.26456/pcascnn/2020.12.016. (In Russian).
- 15. Deepanshu K., Deepak Y., Udeshwari J. Enhanced ionic conductivity through B-site Zr doping in NaNbO₃ solid electrolytes, *Journal of Power Sources*, 2024, vol. 613, art. no. 234948, 11 p.. DOI: 10.1016/j.jpowsour.2024.234948.

Original paper

Effect of Bi-doping on the electrophysical properties of sodium niobate solid solutions

E.V. Barabanova, N.M. Ospelnikov, A.I. Ivanova

Tver State University, Tver, Russia

DOI: 10.26456/pcascnn/2024.16.033

Abstract: Introduction of dopants is a classic method for modifying the properties of materials, in particular, complex oxides of the perovskite family with the general formula ABO_3 . Ions located in positions A and/or B are substituted. In this case, their valence can coincide with the valence of the basic ion (isovalent substitution) or differ (heterovalent substitution). Sodium niobate $(NaNbO_3)$ is a convenient basis for producing ferroelectric solid solutions. Doping changes the properties of sodium niobate in a wide range, allowing the production of functional materials for various applications. In this paper, the effect of Bi^{3+} doping upon substitution of niobium ion Nb^{5+} on the structure and electrophysical properties of sodium niobate is studied. It has been shown that such compositions are characterized by a significant increase in electrical conductivity with increasing the doping concentration, a decrease in the Curie temperature, and a change in the grain structure. The dopant concentration is more than 10 mol. % leads to the formation of some secondary phases.

Keywords: ionic conductivity, ferroelectric solid solutions, sodium niobate, dielectric permittivity.

Барабанова Екатерина Владимировна — к.ф.-м.н., доцент, доцент кафедры прикладной физики ФГБОУ ВО «Тверской государственный университет»

Оспельников Никита Михайлович – аспирант 3 года обучения физико-технического факультета ФГБОУ ВО «Тверской государственный университет»

Иванова Александра Ивановна — к.ф.-м.н., доцент, доцент кафедры прикладной физики ФГБОУ ВО «Тверской государственный университет»

Ekaterina V. Barabanova – Ph. D., Docent, Docent of the Applied Physics Department, Tver State University Nikita M. Ospelnikov – 3^{rd} year postgraduate student, Physics and Technology Faculty, Tver State University Alexandra I. Ivanova – Ph. D., Docent, Docent of the Applied Physics Department, Tver State University

Поступила в редакцию/received: 01.09.2024; после рецензирования/revised: 05.10.2024; принята/accepted 08.10.2024.