1. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ НАНОЧАСТИЦ, НАНОСИСТЕМ И НАНОМАТЕРИАЛОВ

УДК 539.216.2:537.533.35+539.26

Оригинальная статья

Комплексный подход к изучению фрактальных структур на поверхности железа

А.С. Антонов 1 , Н.Ю. Сдобняков 1 , В.А. Анофриев 1 , М.С. Афанасьев 2,3 , Е.М. Семенова 1 , В.В. Макаев 1

¹ΦΓБОУ ВО «Тверской государственный университет» 170002, Россия, Тверь, Садовый пер., 35 ²ΦГБОУ ВО «МИРЭА - Российский технологический университет» 119454, Россия, Москва, пр. Вернадского, 78 ³Фрязинский филиал ФГБУН «Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук» 141190, Россия, Московская область, Фрязино, пл. Введенского, 1

DOI: 10.26456/pcascnn/2024.16.007

Аннотация: Наноразмерные пленки железа различной толщины и на разных пространственных масштабах изучены с помощью двух альтернативных методов: атомно-силовой микроскопии и сканирующей туннельной микроскопии. Выявлено, что морфология поверхности и фрактальная размерность зависят не только от толщины пленки, но и от условий осаждения, и последующей цифровой обработки. Сделан вывод о том, что поверхность имеет сильно развитый рельеф, что отвечает наличию высоких значений фрактальной размерности. Выдвинута гипотеза о том, что присутствие оксидов железа на поверхности исследуемых образцов существенно влияет на их морфологию, способствуя формированию сложного и высокоразвитого рельефа. Эти оксиды приводят к образованию структурных неоднородностей, что приводит к наблюдению на поверхности пленки агломератов с достаточно широким диапазоном значений фрактальной размерности (от 2,49 до 2,94), т.е. оксиды способствуют агрегации частиц, создавая более сложную структуру поверхности. Кроме того, метод выделения агломератов позволил фиксировать увеличение величины фрактальной размерности, что говорит об эффективности выделения и изучения отдельных сложных по структуре объектов поверхности. Таким образом, для наноразмерных пленок железа становится важным учет эффектов окисления и агломерации элементов поверхности при их анализе и выборе способа получения для выявления структур с определенным значением фрактальной размерности.

Ключевые слова: атомно-силовая микроскопия, сканирующая туннельная микроскопия, магнетронное напыление, фрактальная размерность, пленки железа.

1. Введение

Большинство природных поверхностей, а также поверхностей, представляющих интерес для технологических применений, таких как полированные или после пескоструйной обработки характеризуются фрактальной структурой в широком диапазоне масштабов. Принято считать, что их фрактальная размерность (ФР) лежит в диапазоне значений от 2 до 3 [1], что свидетельствует о развитости объёмных структур на исследуемой области поверхности. Однако в настоящее время для

© А.С. Антонов, Н.Ю. Сдобняков, В.А. Анофриев, М.С. Афанасьев, Е.М. Семенова, В.В. Макаев, 2024

практического применения в устройствах микро- и наноэлектроники интерес представляют наноразмерные плёнки металлов, которые обладают уникальными свойствами, отличающимися от характеристик их макроскопических аналогов. Эти свойства открывают возможности для создания электронных устройств и приборов с требуемыми параметрами. В числе важных характеристик — морфология поверхности плёнок, включая фрактальный рельеф [2]. Морфология поверхности играет ключевую роль в анализе тонких плёнок и оценке их качества. Хотя качество рельефа поверхности обычно определяется параметрами шероховатости, сами значения этих параметров, безусловно, зависят от масштаба образца.

Интерес исследователей к оценке ФР металлических пленок может быть оценен, например, из обзора [3], в котором собраны данные за период с 1990 по 2021 годы о значениях ФР, методах получения пленок, в том числе металлических. Результатом развития технологий и методов получения тонкоплёночных структур является возможность исследовать тонкие плёнки практически любых материалов, включая металлы, сплавы, оксиды, керамику, полимеры и т.д. Несмотря на такой значительный интерес к исследованию поверхностей металлических плёнок и развитию методик для анализа их структуры, включая фрактальные [4], внимание к настоящего времени было недостаточным. вопросам ДО Наноразмерные тонкие плёнки железа с фрактальным рельефом вызывают особый научный интерес [5] и представляют собой перспективный материал для применения в микроэлектронике [6].

Проблема получения чистых металлических плёнок диэлектрических подложках, в том числе наноразмерных железных плёнок, может быть осложнена быстрыми процессами окисления, которые могут усиливаться за счёт высокоразвитого рельефа поверхности. Морфология оксидных плёнок железа была исследована в том числе и авторами работы [7]. Было показано, что атомно-силовая микроскопия и рентгеновское рассеяние являются мощными и взаимодополняющими методами для точного изучения фрактальных параметров поверхности. Для гладких поверхностей экспериментальные значения, полученные обоими методами, вполне сопоставимы. В [8] авторами было исследовано формирование фрактальных окисных кластеров на поверхности аморфного железа. Для анализа кристаллической структуры образцы подвергались кристаллизации посредством отжига. Было выявлено, что фрактальные появляются исключительно на аморфных отсутствуют на поликристаллических образцах. Предполагается [8], что на фронте кристаллизации существует жидкая переохлажденная зона между аморфной и кристаллической фазой, где кристаллическая структура формируется в неравновесном режиме. Определена ФР окисных кластеров на аморфных пленках железа. Отмечено, что такие фрактальные кластеры случайным образом возникали на только что осажденных образцах после их извлечения из напылительной камеры, преимущественно на краю пленки, реже в ее центре. Размеры кластеров варьировались от 5 до 20 мм, а толщина их ветвей составляла от 15 до 40 мкм.

2. Постановка задачи с оценкой верификации результатов

исключения возможных артефактов мы применяем поверхности: альтернативные методы исследования сканирующую туннельную микроскопию (СТМ) и атомно-силовую микроскопию (АСМ). представляют собой два ключевых метода исследования наноразмерных поверхностей, которые имеют свои уникальные преимущества. Наиболее значительным преимуществом СТМ является его высокое разрешение, позволяющее визуализировать поверхность с атомарной точностью. Это свойство делает CTM незаменимым инструментом для анализа тонких пленок и наноструктур. Кроме того, CTM предоставляет проведения туннельного возможность спектроскопического анализа, что позволяет детально изучать локальную электронных состояний, открывая новые горизонты в понимании электронных свойств материалов. Однако СТМ предъявляет строгие требования к подготовке поверхности образца, которая должна быть чистой и хорошо проводящей, что ограничивает применение этого метода для ряда материалов. АСМ в свою очередь может работать как с проводящими, так и с непроводящими материалами, что значительно расширяет диапазон его возможных применений. Разнообразие режимов работы АСМ позволяет адаптироваться под специфические задачи исследования. Тем не менее, АСМ обладает более низким разрешением по сравнению с СТМ. Контактная работа зонда с поверхностью может вызывать артефакты изображения, связанные с деформацией поверхности или самим зондом, что требует тщательной интерпретации данных. Использование СТМ и АСМ в комплексе позволяет нивелировать недостатки каждого метода, обеспечивая более полное и точное исследование поверхности. Совместное применение этих методов для анализа одного и того же образца позволяет подтвердить результаты и исключить артефакты, специфичные для каждого метода, предоставляя тем самым богатую и взаимодополняющую информацию о морфологии, электронной структуре и механических свойствах поверхности. Кроме того, из анализа авторов [3] можно сделать вывод о наибольшей популярности этих методов, и, в частности АСМ, для исследования тонких плёнок и, в частности, на предмет ФР. Результаты расчета ФР зависят от характеристики поверхности пленки, то есть от получения данных о

поверхности. Популярность АСМ связана прежде всего с тем, что она основана на замкнутой системе обратной связи слабых сигналов взаимодействия для получения топографии поверхности, поэтому она данные изображения. напрямую выводит высотные топографических изображений с матрицами высот, полученных с помощью АСМ или СТМ, для проведения фрактального анализа также сообщалось об использовании градационных изображений, полученных с помощью других инструментов, таких как сканирующий электронный микроскоп (СЭМ). Однако значение ФР таких градационных изображений может отличаться от значений, полученных с помощью АСМ или СТМ, поскольку градация серого не напрямую связана с высотой измеренной исследованиях градационные точки. некоторых изображения, преобразовать полученные помощью СЭМ, необходимо для последующих топографические данные, а затем использовать расчетов. Прямо полученные топографические данные АСМ и СТМ более подходят для фрактального анализа, чем преобразованные данные. Результаты расчета ФР в таком случае могут значительно отличаться. Поэтому необходимо уделять внимание источнику топографических данных перед проведением фрактального анализа.

3. Методика подготовки образов. Описание СТМ и АСМ эксперимента

Осаждение тонких пленок железа выполнялось магнетронного напыления, основанного на физическом распылении материала мишени (железа) за счет бомбардировки её поверхности ионами рабочего газа (аргона), образующимися в плазме тлеющего разряда, локализованной вблизи мишени. Напыление осуществлялось на установке Cressington 208HR. Равномерность формируемых пленок обеспечивалась вращательно-планетарно-наклонной (R-P-T) платформой, позволяющей выполнять многоугольное перемещение образца. Контроллер толщины высокого разрешения Cressington MTM-20 обеспечил заданную толщину осаждаемых пленок. Процесс напыления выполнялся после откачки и продувки системы аргоном (высокочистый, марка 6.0) при давлении 0,1 мбар и токе 80 мА. Этим методом было получено несколько плёнок железа разной толщины, а именно 65, 80 и 90 нм. Каждая из этих пленок была детально исследована с использованием АСМ и СТМ, что позволило получить высококачественные изображения поверхности, необходимые для глубокого анализа морфологических особенностей образцов.

Анализ морфологии поверхности пленок железа проводился с использованием как встроенного программного обеспечения микроскопов, так и с использованием специализированного [9, 10]. К тому же определение фрактальной структуры на изображениях поверхности образцов зачастую связано с трудностями, возникающими при цифровой

обработке таких изображений. Существующие программные инструменты имеют ряд ограничений, которые вынуждают исследователей создавать и

тестировать собственные решения [11, 12].

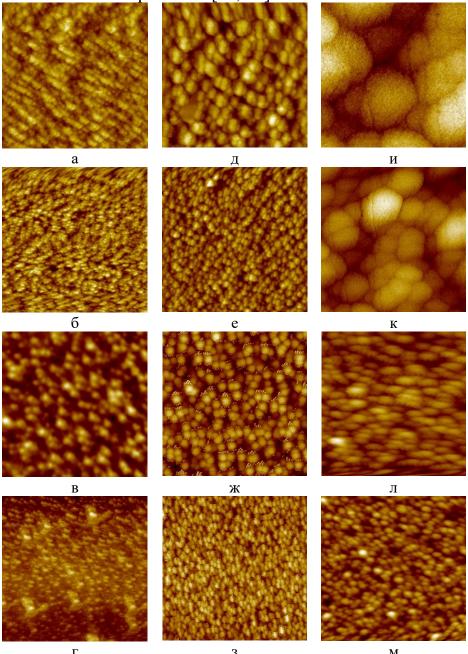


Рис. 1. Изображения пленок железа на слюде. Для вкладок а, б, в, г толщина плёнок составляет 65 нм, для вкладок д, е, ж, 3-80 нм, для вкладок и, к, л, м -90 нм. Вкладки а, д, и, в, ж, л соответствуют масштабу поверхности 500 нм; б, е, к, г, з, м -1000 нм. Данные, полученные с помощью СТМ – вкладки а, д, и, б, е, к; АСМ – вкладки в, ж, л, г, з, м.

На рис. 1 представлены изображения поверхности железных плёнок различной толщины (65, 80 и 90 нм), полученные с использованием методик СТМ и АСМ. В процессе исследования были отобраны изображения с наилучшей исходной контрастностью и визуально сложным рельефом поверхности.

4. Фильтрация изображений

Фильтрация играет очень важную роль, поскольку анализ ФР изображений проводился методами АСМ и СТМ, однако при регистрации изображений возможно появление шумов, обусловленных паразитными эффектами (внешними воздействиями) или самим качеством исследуемого профиля поверхности. В таких случаях анализ изображения без применения пост-обработки корректно провести невозможно, т.к. дефекты изображения, например в виде линейных сдвигов или пиксельных шумов влиять на получаемое значение ΦР. Изначальный изображений, даже при наличии шумов, может содержать критически важную информацию о высотном и пространственном расположении элементов поверхности, в том числе об их агломерациях. Исходные данные, будь то ячейки карты высот или пиксели изображения, играют ключевую роль в точном расчёте ФР. При обработке изображений, направленной на удаление шумов и улучшение качества, возможно непреднамеренное изменение реальных характеристик рельефа, что ведёт к получению невалидных значений ФР.

Также один из видов фильтрации – выделение агломератов самой исследуемого вещества на изображениях, таким «отфильтровывая» подложку и лишние частицы, которые могут вносить свой вклад в итоговую величину ФР. Существует несколько возможных методов выделения границ исследуемых агломератов в зависимости покрываемой ими площади от высоты: метод пороговой фильтрации (threshold detection), метод водораздела (watershed detection), определение границ (edge detection), поиск кругов (circle detection) [9]. В данной работе, как и ранее [13], рассмотрим только метод пороговой фильтрации (threshold detection). С помощью данного метода выделяем агломераты на пленке, что в последующем поможет увидеть различия во вкладах в отфильтрованных и не отфильтрованных итоговые значения ΦР изображений. В Таблицах 1 и 3 приведены значения ФР для изображений, полученных с использованием СТМ и АСМ соответственно. В Таблицах 2 и 4, в свою очередь, приведены значения ФР для изображений с выделенными отфильтрованными участками агломератов. значения ФР отражают влияние Представленные фильтрации исследуемые изображения. Из Таблиц 2 и 4 видно, что значения ФР для изображений с выделенными агломератами выше, чем для исходных изображений, т.е. выделение и фильтрация агломератов приводят к увеличению ФР за счёт повышения детализации рельефа поверхности.

Величины ФР, полученные с использованием двух программных инструментов [9, 12], хорошо коррелируют друг с другом, что позволяет дополнительно верифицировать методики определения ФР и обеспечить

получение адекватного значение ФР для исследуемого рельефа.

Таблица 1. Расчётные значения ФР для исходных изображений (см. рис. 1), полученных с помощью СТМ.

Изображение	Используемое ПО		
	FractalSurface 2.0 [12]*	Mountains 10 [9]**	
Рис. 1 а	2,45	2,56	
Рис. 1 д	2,38	2,49	
Рис. 1 и	2,50	2,44	
Рис. 1 б	2,48	2,61	
Рис. 1 е	2,46	2,65	
Рис. 1 к	2,45	2,54	

Таблица 2. Расчётные значения ФР для изображений (см. рис. 2), полученных с помощью СТМ с выделенными и отфильтрованными участками агломератов.

Изображение	Используемое ПО		
	FractalSurface 2.0 [12]*	Mountains 10 [9]**	
Рис. 2 в	2,89	2,91	
Рис. 2 ж	2,86	2,73	
Рис. 2 л	2,58	2,66	
Рис. 2 г	2,93	2,93	
Рис. 2 з	2,82	2,89	
Рис. 2 м	2,63	2,60	

Таблица 3. Расчётные значения ФР для исходных изображений (см. рис. 1), полученных с помощью АСМ.

Изабражания	Используемое ПО		
Изображение	FractalSurface 2.0 [12]*	Mountains 10 [9]**	
Рис. 1 в	2,32	2,44	
Рис. 1 ж	2,47	2,61	
Рис. 1 л	2,28	2,45	
Рис. 1 г	2,43	2,63	
Рис. 1 з	2,51	2,59	
Рис. 1 м	2,46	2,63	

Таблица 4. Расчётные значения ФР для изображений (см. рис. 3) полученных с помощью АСМ с выделенными и отфильтрованными участками агломератов.

полощого гтотит с выделе	imbivii ii etqiribipebamibivii ji ia	1	
Изображение	Используемое ПО		
	FractalSurface 2.0 [12]*	Mountains 10 [9]**	
Рис. 3 в	2,45	2,57	
Рис. 3 ж	2,89	2,88	
Рис. 3 л	2,50	2,49	
Рис. 3 г	2,69	2,66	
Рис. 3 з	2,94	2,94	
Рис. 3 м	2,77	2,78	

^{*} – погрешность измерений лежит в диапазоне от 0,01 до 0,07.

^{**} – погрешность измерений лежит в диапазоне от 0,02 до 0,04.

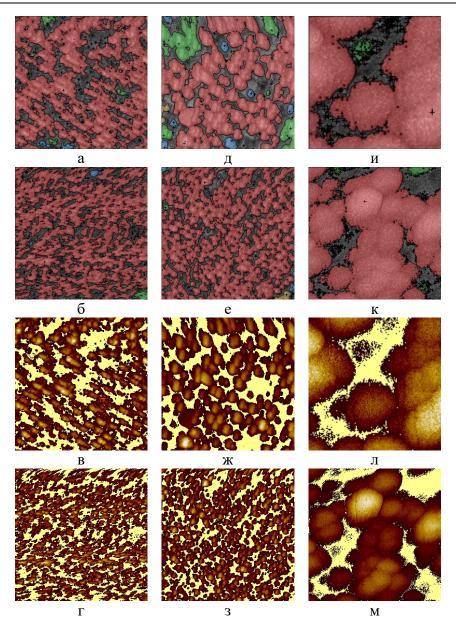


Рис. 2. Изображения пленок железа, полученные с помощью СТМ (данные соответствуют рис. 1), с выделенными (а, б, д, е, и, к) и отфильтрованными (в, г, ж, з, л, м) агломератами на разных масштабах: для вкладок а, б, в, г толщина плёнок составляет 65 нм, для вкладок д, е, ж, 3-80 нм и соответственно для вкладок и, к, л, м – 90 нм. Вкладки а, д, и, в, ж, л получены на масштабе поверхности 500 нм; вкладки б, е, к, г, з, м на 1000 нм.

Сравнительно небольшие различия в значениях для одних и тех же изображений, обработанных разными программными продуктами, могут быть связаны с различиями в алгоритмах обработки и фильтрации изображений, используемых в них. Для отображения разницы диапазонов высот расположения агломератов на изображениях с помощью цветового выделения окрашены области с различающимися пороговыми высотами. Благодаря этому можно идентифицировать и исследовать «высотные» неоднородности поверхности плёнок.

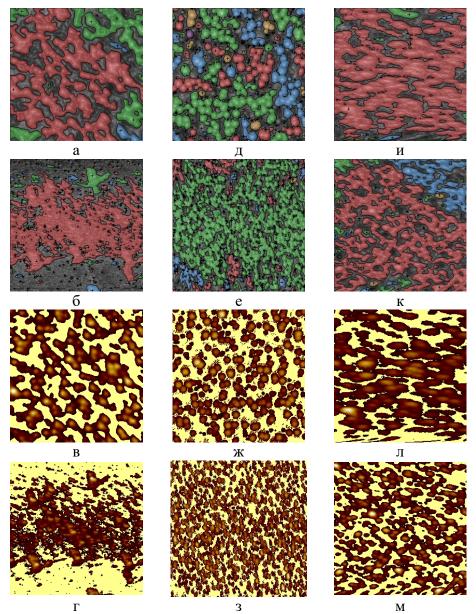


Рис. 3. Изображения пленок железа, полученные с помощью ACM (данные соответствуют рис. 1) с выделенными (а, б, д, е, и, к) и отфильтрованными (в, г, ж, з, л, м) агломератами на разных масштабах: для вкладок а, б, в, г толщина плёнок составляет 65 нм, для вкладок д, е, ж, 3-80 нм и соответственно для вкладок и, к, л, м – 90 нм. Вкладки а, д, и, в, ж, л получены на масштабе поверхности 500 нм; б, е, к, г, з, м – на 1000 нм.

Анализируя изображения, представленные на рис. 1, нами были получены значения ФР (использовались данные, полученные в ПО [9] и [12], базовый метод — метод подсчёта кубов). Результаты измерений для исходных изображений, полученных методами СТМ и АСМ, приведены в Таблицах 1 и 3 соответственно. В Таблицах 2 и 4 представлены результаты расчётов ФР для изображений, на которых выделены участки с агломератами. Значения ФР, представленные в Таблицах 1-2 и 3-4, указывают на различия в морфологии поверхностей в зависимости от

толщины пленок и наличия агломератов. Анализ показал, что агломераты существенно влияют на ΦP , увеличивая её значения. Это связано с тем, что агломераты создают более сложную топографию поверхности, что отражается на значениях ΦP . Одной из вероятных причин значительного увеличения рельефности, может быть, присутствие окислов на поверхности изучаемых образцов. Более того, согласно данным из работ [8, 14, 15], пленки на основе железа, часто демонстрируют высокие значения ΦP , что подтверждает наше наблюдение. Наблюдаемые в отдельных случаях расхождения значений ΦP между ΠO FractalSurface 2.0 [12] и ΠO Моuntains 10 [9] лежит в пределах $\Delta D = 0.2$ и обусловлено ограниченными возможностями управления параметрами в ΠO Mountains 10 [9].

5. Распределение зёрен и однородность плёнок

магнетронном напылении поверхностное распределение агломератов на подложке зачастую очень неоднородно по высоте залегания и общей площади покрытия для конкретной высоты. Такое неоднородное распределение может приводить к значительным вариациям в свойствах плёнки, включая её механические, электрические и оптические характеристики. Для достижения однородности плёнок, необходимо контролировать параметры процесса напыления, такие как давление газа, мощность разряда, расстояние до подложки и температура подложки. Изменение этих параметров может повлиять на кинетику роста зёрен и формирование агломератов, что, в свою очередь, влияет на однородность плёнки. Одним из ключевых факторов, влияющих на распределение зёрен, является режим разряда. В режимах с низким давлением и высокой мощностью обычно наблюдается рост крупных зёрен и образование агломератов, что приводит к более неоднородной плёнке. Напротив, при более высоком давлении и низкой мощности происходит формирование более мелких зёрен, что способствует созданию более однородной плёнки.

Также важным аспектом является подготовка подложки перед напылением. Чистота подложки, её предварительная обработка и наличие барьерных слоёв могут значительно повлиять на распределение зёрен и общую однородность плёнки. Поверхностные дефекты подложки могут служить центрами зарождения агломератов, что ухудшает однородность плёнки.

Предполагается, что для плёнок с неоднородным рельефом, обладающим фрактальной геометрией, характерно влияние деградации поверхности вследствие окисления на изменение ФР. Это связано с тем, что неоднородные структуры будут препятствовать распространению окислов, тем самым образуя защитный поверхностный слой. Это

предположение требует дополнительной проверки, которая может стать предметом следующего исследования. С другой стороны, неоднородный рельеф может стать причиной ускоренного распространения окислов вглубь материала.

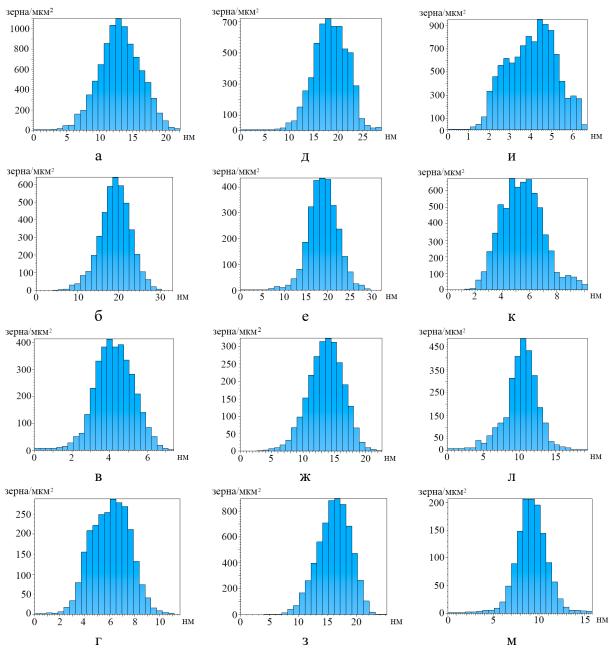


Рис. 4. Распределение агломератов на поверхности пленок железа на слюде на разных масштабах: для вкладок а, б, в, г толщина плёнок составляет 65 нм, для вкладок д, е, ж, 3-80 нм и соответственно для вкладок и, к, л, м -90 нм. Вкладки а, д, и, в, ж, л получены на масштабе 500 нм, вкладки б, е, к, г, з, м - на 1000 нм. Данные, полученные с помощью СТМ вкладки - а, д, и, б, е, к; АСМ вкладки - в, ж, л, г, з, м.

Исследование влияния процессов окисления неоднородных плёнок потребует дополнительной проверки для пленок железа и пленок других

металлов, подверженных окислению. Изображения, представленные на рис. 4 иллюстрируют распределение агломератов на поверхности пленок железа на слюде при различных масштабах.

Анализируя рис. 4 можно сделать следующие выводы:

- оба метода (ACM и CTM) предсказывают, что с увеличением масштаба исследуемых изображений диапазон изменения размеров агломератов увеличивается, что также подтверждает гипотезу, что для прецизионного определения ΦP необходимо исследовать поверхность на малых масштабах (~ 500 нм);
- изменение толщины пленки при использовании СТМ методики позволяет выявлять агломераты меньшего размера, чем может распознать АСМ. В настоящее время причины такого эффекта остаются неясными;
- вид распределений агломератов на поверхности пленок железа в достаточной степени симметричен, что говорит о наличии некоторого характерного размера образованных в процессе магнетронного напыления агломератов, а в дальнейшем на поверхности в зависимости от внешних условий может происходить коалесценция или спекание с получением более крупных агломератов «кратных» размеров.

Отличительной особенность пленок железа, полученных в результате магнетронного напыления (в [16] отмечены особенности напыления ферромагнитных пленок) в данной работе, является определенная периодичность в их структуре (см. рис. 5). С целью проверки данной гипотезы нами были рассчитаны геометрические параметры: коэффициент эксцесса — параметр учитывающий форму функции распределения амплитуды (определяет степень изрезанности поверхности) $S_{ku} = \frac{1}{MNS_q^4} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} \left[z(x_k, y_l) \right]^4$ и коэффициент асимметрии — параметр, который

описывает форму функции распределения амплитуды (показывает симметрию изменения поверхности относительно ее средней линии) $S_{sk} = \frac{1}{MNS_a^3} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} \left[z(x_k, y_l) \right]^3 \quad \text{(см. Таблицу 5). Близость величины } S_{ku} \quad \text{к 3}$

говорит о ярко выраженных пиках, т.е. можно говорить о том, что в процессе на пленках железа формируется структуры по типу «вискеров» (это элементы с большим характеристическим отношением высоты к диаметру основания). Для толщин пленки железа 80 и 90 нм удалось получить практически идеальную симметрию поверхности (значение S_{sk} достаточно близко к нулю).

Таким образом, даже не имея в качестве подложки периодическую структуру для пленок железа, оказалось возможным путем подбора толщины пленки получить поверхность, обладающую периодической структурой. Такой эффект, например, не характерен для пленок золота [2,

17]. Возможно, особенность В данном случае такую удалось идентифицировать использования альтернативного за счет метода напыления – магнетронного напыления, а не вакуумного как в [2, 17-19]. С другой стороны пленки железа обладают рядом специфических, в том числе магнитных свойств.

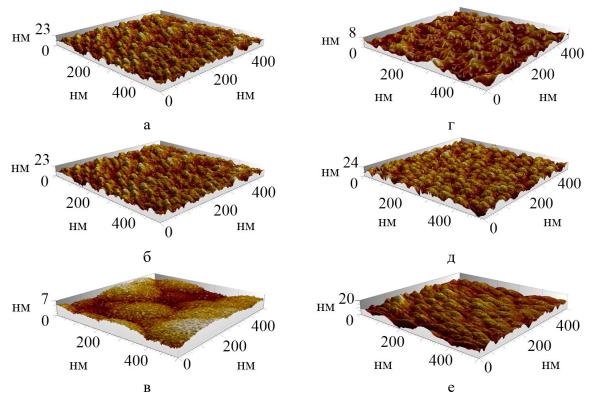


Рис. 5. 3D изображения пленок железа. Вкладки а, г соответствуют толщине 65 нм, вкладки б, д - 80 нм и соответственно вкладки в, е - 90 нм. Данные, полученные с помощью СТМ вкладки - а, б, в; АСМ вкладки - г, д, е. Масштаб изображения 500 нм.

Таблица 5. Геометрические параметры пленок железа на основе анализа рис. 5.

Величина		CTM		ACM		
Беличина	65 нм	80 нм	90 нм	65 нм	80 нм	90 нм
S_{ku}	2,80	2,84	2,96	2,77	2,63	2,75
S_{sk}	0,221	-0,032	0,071	0,423	-0,031	0,082

6. Заключение

В данной работе с использованием АСМ и СТМ методики были исследованы пленки железа, полученные в процессе магнетронного напыления. Анализ изображений показал, что морфология поверхности и ФР зависят не только от толщины пленки, но и от условий осаждения и последующей обработки. При сравнении изображений, полученных разными методами, было выявлено, что СТМ позволяет более детально изучать микроструктуру поверхностей, в то время как АСМ обеспечивает более полное представление о макроструктуре. Изучение наноразмерных пленок железа также показало, что наличие оксидов на поверхности

существенно влияет на их морфологию, способствуя формированию более сложного и высокоразвитого рельефа [8, 14, 15]. Анализ данных выявил, что оксиды играют ключевую роль в образовании структурных неоднородностей, что отражается в высоких значениях ФР. Оксиды способствуют агрегации частиц, создавая более сложную структуру поверхности.

для исходных изображений и изображений с Значения ФР агломератами существенно различаются, выделенными свидетельствует о важности выделения агломератов для более точного описания морфологии поверхности. Значения ФР показывают, изображений выделение агломератов фильтрация И приводят увеличению значений этой величины, что свидетельствует о более высокой сложности и неоднородности поверхности после учета крупных Это подтверждает корректной структурных элементов. важность обработки изображений ДЛЯ получения достоверных данных фрактальной структуре поверхностей. Кроме того, учет эффектов окисления и агломерации является важным аспектом при анализе и разработке наноразмерных пленок железа, поскольку эти процессы оказывают значительное влияние на морфологию и свойства пленок, в частности увеличивая ФР. В [5] была определена ФР полученных агломератов на различных масштабах методом АСМ: на масштабе 5 мкм $D_c = 2,462\pm0,113$; на масштабе 3 мкм $D_c = 2,373\pm0,122$; на масштабе 1 мкм $D_c = 2,298 \pm 0,139$, т.е. можно говорить о том, что с уменьшением масштаба ФР уменьшалась, а рельеф при переходе на наноуровень становился менее развитым. Это может быть связано, в том числе, с чувствительностью методики к наличию оксидов железа. С уменьшением изображения соотношение между поверхностью чистого железа поверхностью, содержащей оксиды может существенно меняться. В данной работе ФР для исходных изображений, определенная использованием CTM – $D_c = 2,38-2,65$, ACM – $D_c = 2,28-2,63$ (оценка погрешности приведена выше). При выделении агломератов значения ФР с использованием CTM – $D_c = 2,58-2,93$, ACM – $D_c = 2,45-2,94$. Таким образом, впервые показано, что для наноразмерных пленок железа эффекты окисления поверхности и агломерации элементов на поверхности оказывают влияние на значение ФР и должны учитываться при их анализе и выборе способа их получения.

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках государственной программы в области научноисследовательской деятельности (0817-2023-0006), а также в рамках государственного задания ИРЭ им. В.А. Котельникова РАН.

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

Библиографический список:

- 1. **Persson, B.N.J.** On the fractal dimension of rough surfaces / B.N.J. Persson // Tribology Letters. 2014. V. 54. I. 1. P. 99-106. DOI: 10.1007/s11249-014-0313-4.
- 2. Сдобняков, Н.Ю. Морфологические характеристики и фрактальный анализ металлических пленок на диэлектрических поверхностях: монография / Н.Ю Сдобняков, А.С. Антонов, Д.В, Иванов. Тверь: ТвГУ, 2019. 168 с.
- 3. **Zhou, W.** Fractal analysis on surface topography of thin films: a review / W. Zhou, Y. Cao, H. Zhao et al. // Fractal and fractional. − 2022. − V.6. − I. 3. − Art. № 135. − 30 p. DOI: 10.3390/ fractalfract6030135.
- 4. **Анофриев, В.А**. К проблеме автоматизации процесса определения фрактальной размерности / В.А. Анофриев, А.В. Низенко, Д.В. Иванов, А.С. Антонов, Н.Ю. Сдобняков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. Вып. 14. С. 264-276. DOI: 10.26456/pcascnn/2022.14.264.
- 5. **Иванов**, Д.В. О формировании фрактальных пленок железа / Д.В. Иванов, А.С. Антонов, Е.М. Семенова, А.И. Иванова, Н.Б. Кузьмин, Н.Ю. Сдобняков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. Вып. 14. С. 108-119. DOI:10.26456/pcascnn/2022.14.108.
- 6. **Фильнов, С.О.** Совместная интеркаляция ультратонких пленок Fe и Co под буферный слой графена на монокристалле SiC(0001) / C.O. Фильнов, Д.А. Естюнин, И.И. Климовских и др. // Письма в журнал экспериментальной и технической физики. 2023. Т. 117. Вып. 5-6. С. 369-376. DOI: 10.31857/S1234567823050087.
- 7. **Arnault, J.C.** Roughness fractal approach of oxidised surfaces by AFM and diffuse X-ray reflectometry measurements / J.C. Arnault, A. Knoll, E. Smigiel, A. Cornet // Applied Surface Science. 2001. V. 171. I. 3-4. P. 189-196. DOI: 10.1016/S0169-4332(00)00550-X.
- 8. **Мягков, В.Г.** Фрактальное окисление аморфных плёнок железа / В.Г. Мягков, В.С. Жигалов, С.М. Жарков // Доклады академии наук. $-1996. T.346. N ext{0} 5. C.612-615.$
- 9. DigitalSurf. Режим доступа: www.url: https://www.digitalsurf.com. 1.04.2024.
- 10. Image Analysis Р9. Руководство пользователя. М.: HT-МДТ СИ, 2019. 582 с.
- 11. **Свидетельство № 2021618928 Российская Федерация**. FractalSurface: программа для анализа поверхности на наноуровне / Н.Ю. Сдобняков, В.А. Анофриев, В.А. Кошелев, А.С. Антонов, Д.В. Иванов; заявитель и правообладатель ФГБОУ ВО «Тверской государственный университет». № 20216180353; заявл. 27.05.2021; зарегистрировано в реестре программ для ЭВМ 02.06.2021. 1 с.
- 12. **Свидетельство № 2023614856 Российская Федерация**. FractalSurface 2.0: программа для анализа поверхности на наноуровне / Н.Ю. Сдобняков, В.А. Анофриев, А.В. Низенко, А.С. Антонов, Д.В. Иванов, Н.Б. Кузьмин; заявитель и правообладатель ФГБОУ ВО «Тверской государственный университет». № 2023613525; заявл. 28.02.2023; зарегистрировано в реестре программ для ЭВМ 06.03.2023. 1 с.
- 13. **Анофриев, В.А.** Паттерн формирования фрактального рельефа для наноразмерных плёнок молибдена / В.А. Анофриев, А.С. Антонов, Д.В. Иванов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. Вып. 15. С. 17-31. DOI: 10.26456/pcascnn/2023.15.017.
- 14. **Krim, J.** Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces / J. Krim, I. Heyvaert, C. Van Haesendonck, Y. Bruynseraede // Physical Review Letters. 1993. V. 70. I. 1. P. 57-60. DOI: 10.1103/PhysRevLett.70.57.
- 15. **Иванова, Н.А.** Образование в газовой фазе агрегатов железа и углеродных наноструктур с включениями железа / Н.А. Иванова, А.М. Бакланов, А.А. Онищук // Химическая физика. -2005. Т. 24. № 4. С.84-94.
- 16. **Юрков, А.Н.** Использование планарного магнетрона для напыления ферромагнитных пленок микронной и нанометровой толщины / А.Н. Юрков, Т.В. Власова, Г.А. Крикунов, М.А. Кононов // Прикладная физика. -2010. -№ 3. C. 103-108.
- 17. Сдобняков, Н.Ю. Измерение вольт–амперных характеристик туннельного контакта вольфрам—золото / Н.Ю. Сдобняков, А.С. Антонов, Т.Ю. Зыков и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2011. Вып. 3. С. 206-216.
- 18. **Антонов, А.С.** Исследование фрактальных свойств наноразмерных пленок золота, серебра и меди: атомно-силовая и туннельная микроскопия / А.С. Антонов, Н.Ю. Сдобняков, Д.В. Иванов и др. // Химическая физика и мезоскопия. -2017. -T. 19. -№ 3. -C. 473-486.
- 19. **Ivanov, D.V.** Determination of the fractal size of titanium films at different scales / D.V. Ivanov, A.S. Antonov, E.M. Semenova et al. // Journal of Physics: Conference Series. 2021. V. 1758. Art. № 012013. 6 p. DOI: 10.1088/1742-6596/1758/1/012013.

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

References:

- 1. Persson B.N.J. On the fractal dimension of rough surfaces, *Tribology Letters*, 2014, vol. 54, issue 1, pp. 99-106. DOI: 10.1007/s11249-014-0313-4.
- 2. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. *Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya* [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
- 3. Zhou W., Cao Y., Zhao H. et al. Fractal analysis on surface topography of thin films: a review, *Fractal and fractional*, 2022, vol. 6, issue 3, art. no. 135, 30 p. DOI: 10.3390/ fractalfract6030135.
- 4. Anofriev V.A., Nizenko A.V., Ivanov D.V., Antonov A.S., Sdobnyakov N.Yu. K probleme avtomatizatsii protsessa opredeleniya fraktal'noj razmernosti [To the problem of automation of the process of determination of the fractal dimension], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 264-276. DOI: 10.26456/pcascnn/2022.14.264. (In Russian).
- 5. Ivanov D.V., Antonov A.S., Semenova E.M., Ivanova A.I., Kuz'min N.B., Sdobnyakov N.Yu. O formirovanii fraktal'nykh plenok zheleza [On the formation of fractal iron films], *Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials*], 2022, issue 14, pp. 108-119. DOI:10.26456/pcascnn/2022.14.108. (In Russian).
- 6. Filnov S.O., Estyunin D.A., Klimovskikh I.I. et al. Joint intercalation of ultrathin Fe and Co films under a graphene buffer layer on a SiC(0001) single crystal, *Letters to Journal of Experimental and Theoretical Physics*, 2023, vol. 117, issue 5, pp. 363-369. DOI: 10.1134/S0021364022603025.
- 7. Arnault J.C., Knoll A., Smigiel E., Cornet A. Roughness fractal approach of oxidised surfaces by AFM and diffuse X-ray reflectometry measurements, *Applied Surface Science*, 2001, vol. 171, issues 3-4, pp. 189-196. DOI: 10.1016/S0169-4332(00)00550-X.
- 8. Myagkov V.G., Zhigalov V.S., Zharkov S.M. Fractal oxidation of amorphous iron films, *Doklady Physics*, 1996, vol. 41, no. 2, pp. 55-58.
- 9. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 01.04.2024).
- 10. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide]. Moscow, NT-MDT SI Publ., 2019, 582 p. (In Russian).
- 11. Sdobnyakov N.Yu., Anofriev V.A., Koshelev V.A., Antonov A.S., Ivanov D.V. *FractalSurface: programma dlya analiza poverkhnosti na nanourovne* [FractalSurface: software for surface analysis at nanoscale]. Certificate RF, no. 2021618928, 2021. (In Russian).
- 12. Sdobnyakov N.Yu., Anofriev V.A., Nizenko A.V., Antonov A.S., Ivanov D.V., Kuz'min N.B. *FractalSurface 2.0: programma dlya analiza poverkhnosti na nanourovne* [FractalSurface 2.0: software for surface analysis at nanoscale]. Certificate RF, no. 2023614856, 2023. (In Russian).
- 13. Anofriev V.A., Antonov A.S., Ivanov D.V. et al. Pattern formirovaniya fraktal'nogo rel'efa dlya nanorazmernykh plyonok molibdena [Formation pattern of fractal relief for nanosized molybdenum films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 17-31. DOI: 10.26456/pcascnn/2023.15.017. (In Russian).
- 14. Krim J., Heyvaert I., Van Haesendonck C., Bruynseraede Y. Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces, *Physical Review Letters*, 1993, vol.70, issue 1, pp. 57-60. DOI: 10.1103/PhysRevLett.70.57.
- 15. Ivanova N.A., Baklanov A.M., Onishchuk A.A. Obrazovaniye v gazovoy faze agregatov zheleza i uglerodnykh nanostruktur s vklyucheniyami zheleza [Formation in the gas phase of iron aggregates and carbon nanostructures with iron inclusions], *Khimicheskaya fizika* [*Chemical Physics*], 2005, vol.24, no. 4, pp. 84-94. (In Russian).
- 16. Yurkov A.N., Vlasova T.V., Krikunov G.A., Kononov M.A. Ispol'zovanie planarnogo magnetrona dlya napyleniya ferromagnitnykh plenok mikronnoj i nanometrovoj tolshchiny [Planar magnetron use for micron and nanometer thickness ferromagnetic film deposition], *Prikladnaya fizika [Applied Physics]*, 2010, no. 3, pp. 103-108. (In Russian).
- 17. Sdobnyakov N.Yu., Antonov A.S., Zykov T. Yu. et al. Izmerenie vol't–ampernykh kharakteristik tunnel'nogo kontakta vol'fram—zoloto [The measurement of the current-voltage characteristics of a tunnel junction of the tungsten-gold] Измерение вольт–амперных характеристик туннельного контакта вольфрам—золото / Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2011, issue 3, pp. 206-216. (In Russian).
- 18. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. — 2024. — Вып. 16

plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], *Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy]*, 2017, vol. 19, no. 3, pp. 473-486. (In Russian).

19. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, *Journal of Physics: Conference Series*, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.

Original paper

Comprehensive approach to studying fractal structures on iron surfaces

A.S. Antonov¹, N.Yu. Sdobnyakov¹, V.A. Anofriev¹, M.S. Afanasiev^{2,3}, E.M. Semenova¹, V.V. Makaev¹

¹Tver State University, Tver, Russia

²MIREA – Russian Technological University, Moscow, Russia

³Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Fryazino, Russia

DOI: 10.26456/pcascnn/2024.16.007

Abstract: Nanoscale iron films of different thicknesses and at different spatial scales were studied using two alternative methods: atomic force microscopy and scanning tunneling microscopy. It was revealed that the surface morphology and fractal dimension depend not only on the film thickness but also on the deposition conditions and subsequent digital processing. It was concluded that the surface has a highly developed relief, which corresponds to high values of the fractal dimension. A hypothesis was put forward that the presence of iron oxides on the surface of the studied samples significantly affects their morphology, contributing to the formation of a complex and highly developed relief. These oxides lead to the formation of some structural inhomogeneities, which lead to the observation of agglomerates in a fairly wide range of fractal dimension values (from 2,49 to 2,94) on the film surface, i.e. oxides contribute to the aggregation of particles, creating a more complex surface structure. In addition, a method of separating agglomerates allowed us to record an increase in the value of the fractal dimension, which indicates the efficiency of separating and studying individual complex surface objects. Thus, for nanosized iron films, it becomes important to take into account the effects of oxidation and agglomeration of surface elements when analyzing them and choosing a method for obtaining them to identify structures with a certain value of the fractal dimension.

Keywords: atomic force microscopy, scanning tunneling microscopy, magnetron sputtering, fractal dimension, iron films.

Антонов Александр Сергеевич — к.ф.-м.н., научный сотрудник кафедры общей физики ФГБОУ ВО «Тверской государственный университет»

Сдобняков Николай Юрьевич — д.ф.-м.н., доцент кафедры общей физики $\Phi \Gamma EOV\ BO\ «Тверской государственный университет»$

Анофриев Виталий Александрович – аспирант 2-го года обучения кафедры общей физики ФГБОУ ВО «Тверской государственный университет»

Афанасьев Михаил Сергеевич — д.т.н., доцент, профессор $\Phi \Gamma EOV$ ВО «МИРЭА — Российский технологический университет», ведущий научный сотрудник Φ рязинского филиала $\Phi \Gamma EVH$ «Институт радиотехники и электроники им. В.А. Котельникова РАН»

Семенова Елена Михайловна – к.ф.-м.н., доцент кафедры физики конденсированного состояния ФГБОУ ВО «Тверской государственный университет»

Макаев Владислав Викторович — студент 4 курса кафедры общей физики ФГБОУ ВО «Тверской государственный университет»

Alexander S. Antonov – Ph. D., Researcher, General Physics Department, Tver State University
Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
Vitaly A. Anofriev – 2nd year postgraduate student, General Physics Department, Tver State University
Mikhail S. Afanasiev – Dr. Sc., Docent, Professor, MIREA – Russian Technological University, Leading
Researcher, Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of RAS
Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
Vladislav V. Makaev – 4th year student, General Physics Department, Tver State University

Поступила в редакцию/received: 11.08.2024; после рецензирования/revised: 29.08.2024; принята/accepted 02.09.2024.