ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОРГАНИЧЕСКИХ СВЯЗУЮЩИХ НА МИКРОСТРУКТУРУ ОБРАЗЦОВ ЛАЗЕРНОЙ ПОРОШКОВОЙ НАПЛАВКИ ПОРОШКОВ SMFE В МАГНИТНОМ ПОЛЕ

Обложка

Цитировать

Полный текст

Аннотация

В работе представлено два основных направления повышения эффективности постоянных магнитов (ПМ), за счёт изменения химического состава будущего магнита и за счёт изменения формы магнитного поля. Повышение эффективности ПМ за счёт изменения химического состава на протяжении десятилетий позволяло многократно уменьшить размер конечного изделия. В свою очередь, повышение эффективности ПМ за счёт изменения формы магнитного поля является сравнительно новым направлением. На основании анализа представленных способов повышения эффективности ПМ предлагается использовать аддитивные технологии, а именно лазерную порошковую наплавку, для изготовления постоянных магнитов. Для проведения экспериментальных исследований использован роботизированный комплекс KUKA и постоянные магниты в качестве источника постоянного магнитного поля. В работе представлены режимов лазерной порошковой наплавки порошков Sm и Fe. Для поддержания постоянного магнитного поля использован комплекс из шести неодимовых магнитов. Описано распределение напряжённости магнитного поля между магнитами и в основной рабочей области. Представлен внешний вид и состояние порошков, используемых для изготовления экспериментальных образцов. Описаны экспериментальные образцы и принцип отбора проб для проведения анализа микроструктуры и спектров концентрации элементов. У полученных образцов исследована микроструктура и распределение элементов в зависимости от ориентации образцов относительно магнитного поля и направления лазерной наплавки. Установлено влияние применяемых органических связующих на микроструктуру и химический состав. Исследовано распределение элементов в образцах и переходном слое между подложкой и наплавленным металлом.

Об авторах

Дмитрий Сергеевич Яцко

Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук; Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук; ИАПУ ДВО РАН

Email: d.s.yatsko@mail.ru
ORCID iD: 0000-0003-1761-2540
Центр Лазерных Технологий, Центр Лазерных Технологий

Список литературы

  1. Laura H. Lewis and Fe´Lix Jime´Nez-Villacorta. Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation // Metallurgical and Materials Transactions A 44-Suppl, January 2013 doi: 10.1007/s11661-012-1278-2
  2. Oliver Gutfleisch, Matthew A. Willard, Ekkes Brück, Christina H. Chen, S. G. Sankar, and J. Ping Liu. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Effi cient // Advanced Materials 20:1-22 August 2011
  3. Прахт В.А., Дмитриевский В.А., Казакбаев В.М. Оптимальное проектирование безредукторной машины с переключением потока для ветрогенератора // Известия ТПУ. 2020. №5. URL: https://cyberleninka.ru/article/n/optimalnoe-proektirovanie-bezreduktornoy-mashiny-s-pereklyucheniem-potoka-dlya-vetrogeneratora (дата обращения: 16.11.2023).
  4. Шаповало А.А. Комплекс организационно-технических решений по совершенствованию работы энергохозяйств дочерних обществ ПАО «Газпром» в современных условиях // Газовая промышленность. 2017. №11 (760). URL: https://cyberleninka.ru/article/n/kompleks-organizatsionno-tehnicheskih-resheniy-po-sovershenstvovaniyu-raboty-energohozyaystv-dochernih-obschestv-pao-gazprom-v (дата обращения: 14.11.2023).
  5. Нагайцев В.И., Сергеев С.В., Сизякин А.В. Эволюция требований к свойствам материалов постоянных магнитов для электрических машин // Вестник ЮУрГУ. Серия: Энергетика. 2021. №1. URL: https://cyberleninka.ru/article/n/evolyutsiya-trebovaniy-k-svoystvam-materialov-postoyannyh-magnitov-dlya-elektricheskih-mashin (дата обращения: 14.11.2023).
  6. Валеев Р.А., Пискорский В.П., Королев Д.В., Моргунов Р.Б. Оптимизация содержания кобальта как способ температурной стабилизации редкоземельных магнитов // Труды ВИАМ. 2023. №3 (121). URL: https://cyberleninka.ru/article/n/optimizatsiya-soderzhaniya-kobalta-kak-sposob-temperaturnoy-stabilizatsii-redkozemelnyh-magnitov (дата обращения: 16.11.2023).
  7. Макаричев Ю.А., Иванников Ю.Н., Ратцев Я.А., Полянский Е.А. Комбинированный магнитный подвес // Вестник Самарского государственного технического университета. Серия: Технические науки. 2020. № 4 (68). URL: https://cyberleninka.ru/article/n/kombinirovannyy-magnitnyy-podves (дата обращения: 16.11.2023).
  8. Лукин А.А. Особенности формирования высококоэрцитивного состояния в ПМ типа рзм-м // ГИАБ. 2007. №12. URL: https://cyberleninka.ru/article/n/osobennosti-formirovaniya-vysokokoertsitivnogo-sostoyaniya-v-pm-tipa-rzm-m (дата обращения: 16.11.2023).
  9. Чередниченко И.В., Бондаренко Ю.А., Колодяжный М.Ю., Кузьмина Н.А., Шубаков В.С., Жуков Д.Г. Структура и свойства сплавов для постоянных магнитов юндк25ба, полученных методом направленной кристаллизации с жидкометаллическим охладителем // Труды ВИАМ. 2017. №11 (59). URL: https://cyberleninka.ru/article/n/struktura-i-svoystva-splavov-dlya-postoyannyh-magnitov-yundk25ba-poluchennyh-metodom-napravlennoy-kristallizatsii-s (дата обращения: 16.11.2023).
  10. Cherednichenko I.V., Bavina M.A., Bondarenko Yu.A., Shurygin V.D., Ovchinnikov A.D., Galimullin S.A. Influence of directional crystallization parameters on the structure and properties of permanent magnets made of Yundkba alloy // Proceedings of VIAM. 2023. No. 11 (129). URL: https://cyberleninka.ru/article/n/vliyanie-parametrov-napravlennoy-kristallizatsii-na-strukturu-i-svoystva postoyannyh-magnitov

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».