
Наукоёмкие технологии при ремонте, восстановлении деталей и нанесении покрытий

Наукоёмкие технологии в машиностроении. 2023. №7 (145). С.39-48. Science intensive technologies in mechanical engineering. 2023. №7 (145). Р. 39-48.

Научная статья УДК 62-419.8/620.22/681.7.013.84/621.373.826 doi: 10.30987/2223-4608-2023-7-39-48

Сравнительный анализ качества маркировки полимерной и кремнийорганической пленки при обработке волоконным наносекундным лазером

Евгений Иванович Пряхин¹, д.т.н. **Елена Юрьевна Трошина**², аспирант ^{1,2} *Санкт-Петербургский горный университет, Санкт-Петербург, Россия* ¹ e-p-mazernbc@yandex.ru, https://orcid.org/0000-0002-2372-2255 ² ivan.grey.90@mail.ru, https://orcid.org/0000-0000-0000-0000

Аннотация. Для идентификации продукции на всех этапах производства используют маркировку с помощью двумерных штрих-кодов DataMatrix. В связи с тем, что изделия имеют различные типы поверхностей, находит все большее применение маркировка с помощью самоклеящихся полимерных пленочных материалов, на которых информация записывается лазером методом DPM (Direct Part Marking). Эти пленки, называемые «лазерные пленки», часто используются на производствах, особенно в автомобильной промышленности, так как имеют ряд преимуществ перед другими носителями информации. Однако, такие пленки (tesa 6930, 3M 7847) в основном импортные и дорогостоящие, а также имеют ограничение по температуре эксплуатации до 250 °C, что бывает недостаточным. В статье рассматриваются зарубежные и отечественные пленки, включая полимерную НПМ012 и кремнийорганическую ЛП2. Пленки серии ЛП – это новая группа лазерных пленок на органосилоксановой основе, которые позволяют применять маркировку лазером для деталей, эксплуатирующихся до 1000 °C. В статье проводится сравнительный анализ маркировки полимерных пленок и кремнийорганической пленки в соответствии с международными стандартами технологий автоматической идентификации и сбора данных. Лазерная маркировка производится с помощью волоконного наносекундного лазера с мощностью 30 Вт и длиной волны 1,064 мкм. В качестве штрих-кода используется DataMatrix (GS1) по Российской системе маркировки и прослеживания товаров «Честный знак». Оценка качества маркировки осуществляется сканированием верификатором для проверки соответствия стандартам ISO/IEC. В статье описывается подбор технологических параметров лазерного нанесения штрих-кода для обеспечения качественной маркировки.

Ключевые слова: штрих-код, лазерная обработка, маркировка, контрастность, считываемость кодов, полимерные пленки, наносекундный лазер

Для цитирования: Пряхин Е.И., Трошина Е.Ю. Сравнительный анализ качества маркировки полимерной и кремнийорганической пленки при обработке волоконным наносекундным лазером // Наукоемкие технологии в машиностроении. 2023. № 7 (145). С. 39–48. doi: 10.30987/2223-4608-2023-7-39-48

Comparative test for polymer and organosilicon film quality marking in nanosecond fiber laser processing

Evgeny I. Pryakhin¹, D.Eng. Elena Yu. Troshina², PhD student ^{1,2} Saint Petersburg Mining University, Saint Petersburg, Russia ¹ e-p-mazernbc@yandex.ru, ² ivan.grey.90@mail.ru

Hayкoëмкие технологии при ремонте, восстановлении деталей и нанесении покрытий Science intensive technologies in coating, parts repair and recovery

Abstract. To identify products at all stages of production, a code mark is used by two-dimensional DataMatrix barcoding. Due to the fact that there are different types of surfaces, marking with the help of self-adhesive polymer film materials, where the information is recorded by a laser using the DPM (Direct Part Marking) method, is becoming increasingly popular. These films, called "laser films", are often used in manufacturing, especially in the automotive industry, as they have a number of advantages compared to other information carriers. However, such films (tesa 6930, 3M 7847) are mostly imported and expensive, and also have an operating temperature limit of up to 250 °C, which is sometimes insufficient. The article discusses foreign and domestic films, including polymer NPM012 and organosilicon LP2. LP series are a new group of organosiloxane—based laser films allowing the use of laser marking for parts operating up to 1000 °C. The article provides a comparative analysis of the labeling of polymer films and organosilicon films in accordance with international standards of automatic identification and data collection technologies. Laser marking is performed using a nanosecond fiber laser with a power of 30 watts and a wavelength of 1,064 microns. DataMatrix (GS1) is used as a barcode according to the Russian system of marking and keeping track of goods "Honest Mark". Marking quality assessment is carried out by scanning verifier to check the compliance validation for ISO/IEC standards. The article describes the adjustment of laser barcoding technological parameters for ensuring high-quality marking.

Keywords: barcode, laser processing, marking, contrast, code readability, polymer films, nanosecond laser

For citation: Pryakhin E.I., Troshina E.Y. Comparative test for polymer and organosilicon film quality marking in nanosecond fiber laser processing / Science intensive technologies in mechanical engineering. 2023. №7 (145). P. 39–48. doi: 10.30987/2223-4608-2023-7-39-48

Введение

В последнее десятилетие для идентификации продукции, как готовой, так и на этапе ее производства, применяется маркировка с использованием двумерных штрих-кодов. В основном маркировка наносится на бумажные и пластиковые этикетки, которые наклеиваются на изделие или его упаковку. Это дает возможность обеспечивать определенную защиту готовой продукции от фальсификации, а на этапе производства позволяет отслеживать серию и партию изделия [1, 2]. Но маркировка бумажными и пластиковыми этикетками не может гарантировать абсолютную защиту продукции от подделки, так как указанные виды этикеток могут быть заменены на другие с измененной информацией. Поэтому, всё чаще находит применение маркировка с использованием самоклеящихся этикеток из полимерных пленочных материалов - полиакрилатов и полиуретанов, предназначенных для обработки и записи информации с использованием лазера. Наклеенная на изделие этикетка из такой пленки не может быть заменена, так как при попытке ее снятия с изделия она разрушается, что обеспечивает гарантию подлинности размещенной на ней информации, а также позволяет идентифицировать готовое изделие.

Основные используемые для лазерной маркировки полимерные пленки являются импортными. Пользователи называют их «лазерная пленка». Основными производителями лазерной пленки являются компании «Tesa SE» (Германия) и «ЗМ» (США) [3]. В России предлагается аналог: пленка НПМ012 компании

АО «Научные приборы». Перечисленные полимерные пленки имеют невысокую температуростойкость – до $250\,^{\circ}$ С.

В то же время существует необходимость маркировать лазерными пленками изделия и заготовки, работающие при более высоких температурах: от $300~^{\circ}$ С до $1000~^{\circ}$ С [4-6]. Например, рабочая температура двигателя вертолета может колебаться в диапазоне от $400~^{\circ}$ С до $900~^{\circ}$ С в зависимости от параметров эксплуатации и модели двигателя [7]. При этом детали двигателя также подлежат маркировке.

Для маркировки машиностроительных деталей, эксплуатирующихся в условиях высоких температур ООО «Лазерный центр» предлагает использовать опытную композитную лазерную пленку ЛП2. Пленки серии ЛП в основном состоят из кремнийорганических соединений и имеют температуростойкость до 1000 °С [8, 9]. Она хорошо обрабатывается комплексами лазерной маркировки (ИК и УФ излучения) по методу Direct Part Marking (DPM), обеспечивая контрастное изображение штрих-кодов [10 – 12].

Все марки лазерных пленок производятся в виде многослойных композитных гибких лент. Верхний тонкий слой имеет черный цвет, слой под ним — белый. Это принципиальная система для получения контрастных изображений посредством удаления лазером черного слоя и проявления белого.

Черный материал хорошо поглощает электромагнитное излучение благодаря взаимодействию энергии с молекулярными структурами материала. Эта энергия вызывает колебания молекул и перемещения на энергетических

уровнях, что приводит к возникновению тепла. При действии лазерного излучения на поверхность материала происходит быстрый нагрев и испарение верхнего слоя пленки. В результате происходит абляция поверхности черного слоя и избирательное проявление белого слоя пленки. В совокупности эта технология позволяет получать контрастные изображения.

Получение изображений с высоким контрастом и разрешением дает возможность производителям соответствовать международным стандартам в области информационных технолонапример, стандарт 15415:2011, регламентирующий технологии автоматической идентификации и сбора данных, устанавливает требования к качеству изготовления двумерного кода [13]. Для считывания цифровыми и аналоговыми сканерами изображение должно обладать высокой степенью контраста, модуляции, однородности и равномерности. Эти требования относятся и к меткам-маркерам, использующимся при пространственном сканировании в процессе эксплуатации, обслуживания и ремонта крупногабаритных механизмов изделий [14].

Качественная маркировка продукции является одним из важнейших элементов в процессе производства и сбыта. Она позволяет легко идентифицировать и контролировать продукцию на стадиях производства, отследить продукт на этапе транспортировки, обеспечивает безопасность и качество для потребителя. Один из самых распространенных и надежных форматов штрих-кодов для маркировки продукции — DataMatrix. Он позволяет сохранять большое количество информации на маленькой площади и надежно защищать информацию от ошибок при считывании.

Стандарты качества маркировки DataMatrix играют важную роль в обеспечении эффективной работы систем считывания и обработки информации. Они определяют требования к качеству информации, которая представлена в коде. Такие стандарты определяют, каким образом должен быть нанесен код на изделие, как проведена проверка его качества, и какие требования должны быть выполнены для обеспечения эффективного считывания.

Стандарты качества считывания DataMatrix определяют требования к оборудованию, которое должно использоваться для считывания кодов, они учитывают множество факторов, оказывающих влияние на эффективность считывания, например, расстояние между кодом и считывающим устройством, угол наклона, скорость передачи данных и т. д. Качественная маркировка и эффективное считывание данных позволяют оперативно осуществлять контроль качества продукции на всех этапах ее производства и дальнейшего жизненного цикла, а также повышать эффективность работы предприятий и минимизировать риски нарушения прав потребителей.

Лазерная маркировка штрих-кодов имеет ряд преимуществ перед другими методами маркировки, такими как термопечать и т. д. Важнейшими преимуществами лазерной маркировки штрих-кодов являются: высокое качество маркировки, отсутствие расходных материалов, долговечность, быстрота нанесения, экономичность и возможность наносить разнообразные форматы маркировки: текст, код 128, UPC, EAN и другие.

На производствах для маркировки используются наносекундные волоконные лазеры из-за их способности эффективно нагревать или испарять поверхностные слои изделий из разных материалов с использованием микроскопических отпечатков импульсов на поверхности различных материалов [15]. Этот процесс маркировки проходит на основе обработки поверхности объекта лазерным лучом, объединенным с визуализацией деталей и навигацией по требующимся действиям благодаря программному обеспечению.

Волоконные лазеры с длиной волны 1,064 мкм взаимодействуют с материалами, которые являются оптически непрозрачными для данной длины волны (металлы, керамики, углеродистые и пигментированные полимеры). Одним из основных преимуществ использования наносекундных волоконных лазеров для маркировки является их высокая точность и скорость работы. Но качество маркировки зависит не только от лазерного оборудования, а от способности материала обрабатываться лазером.

В данной работе проводился сравнительный анализ полимерных пленок tesa 6930, 3М 7847, НПМ012 и кремнийорганической пленки ЛП2 на предмет соответствию международным стандартам маркировки. Маркировка осуществлялась волоконным

наносекундным лазером ТурбоМаркер-30А4. Целью работы являлась оценка способности материалов обеспечивать качественную маркировку. В процессе работы осуществлялся подбор технологических параметров лазерного нанесения штрих-кода и сканирование верификатором для автономной проверки штрих-кодов на соответствие стандартам ISO/IEC.

Материалы и методика проведения эксперимента

В исследовании изучались пленки для лазерной маркировки tesa 6930, 3M 7847, НПМ012 и ЛП2. Основной материал пленок (табл. 1) представляет собой полимер с внедренными модификаторами. Состав модификаторов производителями не разглашается.

1. Основные характеристики изучаемых лазерных пленок 1. The main characteristics of the studied laser films

Пленки	0 ~	Толщина материала без клея, мм		Температура эксплуа- тации, °С		П	
	Основной материал	Черный верх- ний слой	Белый нижний слой	Min	Max	Поверхность	
3M 7847	модифицированный по- лиактрилат	0,01	0,05	-40	250		
tesa 6930	модифицированный поли- уретан	0,02	0,07	-40	250	матовая	
НПМ012	модифицированный поли(о-гидроксиамид)	0,01	0,05	-50	250		
ЛП2	модифицированный органосилоксан	0,03	0,08	-50	700		

рентгенофлуоресцентному Благодаря анализу, выполненному научно-образовательным «Центром коллективного пользования» СПГУ, выявлены общие для всех материалов элементы наполнения: А1 до 5,0 %; К до 3,0 %; Na и Mg до 2,0 %; P, Ca, Sr, Cl и Zr до 1 %. Черный слой - с добавлением технического углерода (до 5,0 %), за исключением НПМ012 с черным красителем – спирторастворимый нигрозин (5,0 %). Белый слой – с добавлением диоксида титана рутильной формы (до 10 %). Все пленки являются лазерочувствительными, имеют высокую степень стойкости к воздействию химических веществ, к истиранию и старению. В исследовании использовались пленки только с матовой поверхностью.

Лазерная обработка производилась на системе ТурбоМаркер-30A4. Это станок для лазерной маркировки на базе иттербиевого наносекундного импульсного волоконного излучателя YLPN-1-4x200-30-М. Характеристики излучателя: длина волны 1,064 мкм; средняя мощность 30 Вт; энергия импульса 1,0 мДж; продолжительность импульса варьируется от 4 до 200 нс; частота повторений импульсов от 1,6 до 1000 кГц. Система перемещения луча: два сканирующих зеркала. Фокусирующий объектив F-Theta с полем обработки 130×130 мм.

Управляющее лазером программное обеспечение MaxiGraf.

Выбор оборудования с данными характеристиками обусловлен его универсальностью и высоким распространением на российских производствах и в образовательных учреждениях. Основными материалами, подвергающимися обработке этим лазером, являются все металлы и сплавы, керамики, лазерочувствителные полимеры.

Так как с 2015 г. в России действуют системы маркировки и прослеживания товаров, включающие в себя операции по нанесению и считыванию кода DataMatrix, то в качестве записываемого с использованием лазера изображения на поверхности изделия выбран двухматричный код DataMatrix (GS1). Выбор обусловлен тем, что маркировочные лазерные пленки обычно представляют собой шильдики или этикетки, на которых указывается логотип компании, серия и номер изделия, дата изготовления и хранения, условия эксплуатации и код с зашифрованной информацией.

Рисунки и цифробуквенная информация не вызывает затруднения для лазерного формирования на поверхности изделий, так как их размеры не нуждаются в прецизинности в то время, как штрих-коды могут иметь малый размер

составляющих модулей. Так, например, система «Честный знак», введенная в России с 2019 г., обязывает маркировать продукцию кодами DataMatrix (GS1), которые в среднем имеют размер 12×12 мм и плотность 22×22 модуля. При данных размерах кода один его модуль равен примерно 0,545 мм.

Маркировка двухматричных кодов с размерами модуля менее одного миллиметра нуждается в качественной записи в материале, чтобы обеспечить хорошее считывание кода. Поэтому в данном эксперименте рассматривался код DataMatrix (GS1) с размером модуля 0,545 мм. В код были зашифрованы название станка «TurboMarker-30A4» и обозначение материала, на который нанесен код: «TESA» - tesa 6930, «3М» - 3М 7847, «NР» - НПМ012, «LР» - ЛП2.

Перед записью кода осуществлялся поиск режима маркировки. Для этого необходимо было определить параметры мощности, скорости перемещения луча, частоты следования импульсов, длительности импульса, плотность линий заливки, их угол и количество проходов. Методика нанесения качественного кода подразумевает заливку перпендикулярными линиями, то есть два прохода, где первый под углом 0°, а второй 90°. Таким образом можно добиться на материале ровный рельеф без эффекта «грядок».

Плотность линий определялась экспериментально: лазером формировалась одна линия на средних оптимальных параметрах (мощность 50 %; длительность импульса 100 нс; частота 60 кГц; скорость 1200 мм/с). На материале пленки 3М 7847 образовалась самая широкая дорожка 55 мкм, на материале tesa 6930 — самая узкая 45 мкм. Исходя из среднего размера 50 мкм, была определена плотность линий заливки 20 лин/мм. Расчет проходил, опираясь на то, что линии заливки должны друг друга касаться или накладываться не более чем на половину радиуса отпечатка.

Все изучаемые лазерные пленки имеют важную особенность: толщина и цвет лазерочувствительного слоя у них не сильно отличаются

друг от друга, что позволяет применять близкие по значению показатели лазерной обработки. Но, несмотря на схожие характеристики, исследуемые материалы пленок имеют отличные друг от друга молекулярные соединения, которые в зависимости от спектра поглощения взаимодействуют с излучением 1,064 мкм по-разному. Это подтвердил тест по методу формирования матрицы режимов (рис. 1).

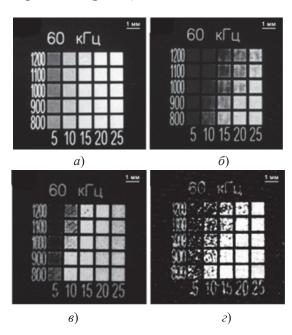


Рис. 1. Матрицы режимов, нанесенные на разные пленки лазером:

a - 3M 7847; δ – tesa 6930; ϵ – НПМ012; ϵ – ЛП2

Fig. 1. Mode matrices for different films made by laser: a - 3M 7847; b - tesa 6930; c - NPM012; g - LP2

Матрица формировалась одна на все четыре изучаемые лазерные пленки. Принцип матрицы заключается в том, что она демонстрирует изменение двух параметров по координатам абсцисс и ординат. В данном случае по оси абсцисс изменялась мощность (%) с шагом 5,0, по оси ординат – скорость (мм/с) с шагом 100. Все остальные показатели сохранялись постоянными: плотность линий 20 лин/мм; два прохода под углом 0° и 90° последовательно; длительность импульса и частота следования импульсов (табл. 2).

2. Параметры нанесения режимов матрицы на ТурбоМаркере-30A4 2. Parameters for applying matrix modes using the Turbo Marker-30A4

P, %	v, mm/c	f , к Γ ц	т, нс	Заливка, лин/мм	Угол, °	Количество проходов	Элемент матрицы, мм	Матрица, ед.
525	8001200	60	100	20	0, 90	2	1	5×5

Длительность импульса избрана по умолчанию 100 нс. Смена длительности импульса в меньшую сторону, повлекла бы менее активную абляцию и увеличение времени обработки, а в большую сторону – активную абляцию вещества и менее контролируемое качество обработки. При длительности импульса 100 нс частота следования импульсов 60 кГц дает максимальную энергию в импульсе. Энергия в импульсе при большей частоте снижается, и при абляции материала образуется больше жидкой фазы. При меньшей частоте энергия в импульсе также снижается, что замедляет процесс обработки, хоть и снижается количество жидкой фазы. Поэтому в тесте

матрицы режимов сохраняются постоянными длительность импульса 100 нс и частота 60 кГц.

Нанесенные на разные пленки матрицы демонстрируют параметры режимов удовлетворительной и неудовлетворительной маркировки. Под удовлетворительной маркировкой подразумевается полное испарение верхнего черного слоя материала и выявление белого ровного слоя без дефектов. К неудовлетворительной маркировке относятся два случая: когда материал черного слоя еще не полностью испарен и когда начинает испаряться или темнеть слой белого материала. Исходя из полученных маркировок (см. рис. 1), выявлены удовлетворительные параметры с чистым белым оттенком. Их параметры записаны в табл. 3.

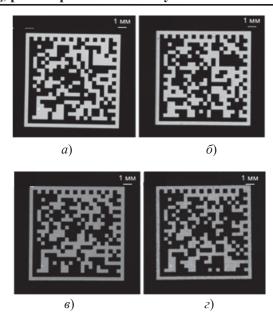
- 3. Параметры мощности и скорости, соответствующие качественной обработки пленок на ТурбоМаркере-30A4, при $\tau=100$ нс, f=60 к Γ ц, заливка плотностью 20 лин/мм, перпендикулярно в два прохода
- 3. Power and speed parameters corresponding to the high-quality processing of films on the turbo-marker-30A4, at τ = 100 ns, f = 60 kHz, filling with a density of 20 lines / mm, perpendicular for two passes

3M 7847		tesa 6930		НПМ012		ЛП2	
P, %	v, mm/c	P, %	v, mm/c	P, %	v, mm/c	P, %	v, mm/c
20	1000	20	800	10	800	15	800
20	1100	20	900	10	900	20	800
20	1200	25	800	15	800	20	900
25	800	25	900	15	900	20	1000
25	900	25	1000	15	1000	25	900
25	1000	-	-	15	1100	25	1000
25	1100	-	-	20	1200	25	1100
25	1200	-	-	-	-	25	1200

Далее для оценки способности записывать в материале качественный штрих-код, на пленки были нанесены штрих-коды на выявленных удовлетворительных режимах из табл. 3.

Оценка штрих-кодов, сформированных в материалах пленок по принципу DPM, проводилась сканером LVS-9585. Это портативный ручной верификатор, разработанный для автономной проверки кодов на соответствие стандартам ИСО/МЭК 15415/15416. Верификатор представляет собой систему на основе 5.0-мегапиксельной камеры, которая распознает линейные (1D) и двумерные (2D) коды шириной до 3,0 дюймов (76 мм) и высотой до 2,0 дюймов (51 мм). Верификатор равномерно

подсвечивает штрихкод автономной подсветкой с постоянной освещенностью, фотографирует штрихкод строго в фокусе камеры и программно рассчитывает параметры контраста и модуляции кода. Модуляция в данном случае — однородность и геометрическая ровность светлых и темных модулей по всему коду.


Управляющая программа верификатора автоматически выдает увеличенную фотографию кода и выходные расчётные данные с указанием полученных параметров в единицах измерения и соответствующих параметрам классов. Класс присваивается целым баллом каждому параметру от 0.0, до 4.0, где 4.0 – наивысший балл. Оценка кода присваивается по

наименьшему полученному параметру класса латиницей от F до A, где -A наивысшая оценка. То есть, если основные показатели класса 4.0, но хотя бы один параметр соответствует 3.0, то присваивается общая оценка B (3.0).

При исследовании полученных штрих-кодов с использованием верификатора всем штрих-кодам были присвоены параметры. Основные параметры имели равные значения: размер модуля 21,5 мил ($\approx 0,546$ мм), нет повреждений и коррекций, модуляция 4.0 класса, запас отражения материала 4.0 класса. По отличающимся параметрам верификатором была проведена сравнительная оценка.

Результаты изучения параметров, полученных штрих-кодов на разных пленках

Из всех записанных на материалах штрих-кодов верификатором были выявлены наиболее качественные маркировки для каждой пленки (рис. 2). Фотографии выполнены и обработаны автоматически верификатором LVS-9585. Размер кода 12×12 мм.

Puc. 2. Коды DataMatrix, нанесенные лазером на пленки:

a - 3M 7847; δ – tesa 6930; ϵ – НПМ012; ϵ – ЛП2.

Fig. 2. DataMatrix codes made by laser for films: a - 3M 7847; b - tesa 6930; c - NPM012; g - LP2.

Штрих-коды получили расчетную классификацию по параметрам оценки. Параметры, имеющие различия, для наилучших штрих-кодов в группе материала представлены в табл. 4.

- 4. Результат оценки сканирования двумерных кодов и отличительных параметров по ИСО/МЭК 15415/15416. Расчет произведен автоматически программным обеспечением Microscan LVS-9585
- 4. The result of the evaluation of two-dimensional codes scanning and distinctive parameters according to ISO/IEC 15415/15416. The calculation is made automatically by Microscan LVS-9585 software

	3M 7847	tesa 6930	НПМ012	ЛП2
De cours de concesses est concesses	TurboMarker-	TurboMarker-	TurboMarker-	TurboMarker-
Расшифрованный текст	30A4 3M	30A4 TESA	30A4 NP	30A4 LP
Контраст, % (класс)	82,0 (4,0)	76,0 (4,0)	56,0 (3,0)	71,0 (4,0)
Осевая неравномерность, % (класс)	0,6 (4,0)	0,6 (4,0)	0,6 (4,0)	0,9 (4,0)
Неоднородность сетки, % (класс)	3,0 (4,0)	4,0 (4,0)	2,0 (4,0)	5,0 (4,0)
Оценка кода (А-F)	A	A	В	A

По результатам оценки штрих-кодов, наивысший класс «A» получили пленки 3M 7847, tesa 6930 и ЛП2. Пленка НПМ012 оценена на класс ниже — «B». Ее ключевым показателем, не удовлетворившим наивысший класс, является контрастность. Контрастность определялась за счет измерения отражаемого света от материала. Роль сыграла не только способность окрашенных полимеров

поглощать и отражать свет, но и микрорельеф поверхности. Отражение света от полимерного материала зависит от шероховатости поверхности, что верно и для других непрозрачных материалов.

Поверхность полученных маркировок можно наблюдать на рис. 3. Видно, что белая поверхность пленок ЛП2 и НПМ012 после маркировки имеет неровный микрорельеф.

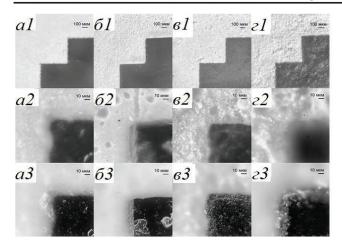


Рис. 3. Фото поверхности пленок после лазерной маркировки. Фрагменты модулей 2*D*-кода на пленках: a-3М 7847; $\delta-$ tesa 6930; $\epsilon-$ H Π M012; $\epsilon-$ Л Π 2; l-увеличение ×100; 2-увеличение ×1000 фокус на белой поверхности, 3-фокус на черной поверхности Fig. 3. Photo of film surfaces after laser marking. Fragments of 2D code modules on films:

a – 3M 7847; b – tesa 6930; c – NPM012; g – LP2; l – magnification ×100; 2 – magnification ×1000 focus on a white surface; 3 – focus on a black surface

Предполагается, что такой шероховатый микрорельеф с эффектом хлопьев мог возникнуть из-за деструкции частично кристаллизованных полимеров. Свет попадает на шероховатую поверхность и рассеивается в разные направления. В этом случае отраженный свет не сфокусирован в точке считывающего устройства, а формирует более широкий угол отражения. Поверхность кажется менее гладкой и более матовой. Если же поверхность полимерного материала более ровная и гладкая, то отраженный свет лучше сфокусирован, что приводит к более яркому и блестящему эффекту, как в случае с пленками 3М 7847 и tesa 6930. Высокая степень яркости при отражении света белого цвета и низкая при отражении света черного цвета дают высокий контраст.

Визуально сравнивая белую поверхность пленок ЛП2 и НПМ012 по шероховатости, создается впечатление, что контрастность ЛП2 должна быть ниже. Но основной материал поли(о-гидроксиамид) пленки НПМ012 обладает высоким светопоглощением. Предполагается, что в нем низкое содержание белого светоотражающего пигмента, и он поглощает больше световой энергии. Уровень отражения света черного слоя от других пленок не

отличается. За счет низкого светоотражения белого слоя HПМ012 общий контраст снижается.

Кремнийорганическое связующее с пигментом белого красителя в пленке ЛП2 обладает высокой светоотражающей способностью, что компенсирует эффект рассеивания света шероховатой поверхностью. Материалы пленок 3М 7848 и tesa 6930 имеют высокую светоотражающую способность и гладкую ровную поверхность, относительно пленок НПМ012 и ЛП2. Но на поверхности полиуретана пленки tesa 6930 после лазерной обработки наблюдаются поры (средний размер 15 мкм). Предполагается, что из-за этого tesa 6930 уступает 3М по контрасту.

Из теста матрицы режимов (см. табл. 3) наблюдается, что пленки 3М 7848 и ЛП2 дают широкий охват параметров для возможной обработки лазером, количество их удовлетворительных маркировок выше, чем у НПМ012 и tesa 6930. Пленка tesa 6930 нуждается в более мощных режимах.

Пленка НПМ012 в данном тесте показала как участки, на которых не хватило мощности, так и участки, на которых вложенная мощность испарила материал белого слоя, образовав рыхлую поглощающую свет структуру поверхности. Необходимо отметить, что толщина черного слоя 3М 7848 и НПМ012 одинаково равна 0,01 мм. Но по наблюдению результатов теста материал пленки НПМ012 является более лазерочувствительным к длине волны 1,064 мкм. С одной стороны, это является преимуществом - обрабатывать пленку можно даже на менее мощном лазере, чем 30 Вт. Но с другой стороны, охват вариаций технологических режимов ниже - подбирать режим обработки необходимо деликатно, чтобы не пережечь материал.

Заключение

Полимерные лазерные пленки 3М 7847 и tesa 6930, состоящие из полиакрилата и полиуретана соответственно, способны обеспечивать качественную маркировку с наивысшей оценкой «А» по стандартам ИСО/МЭК 15415/15416. Этому способствуют высокий контраст материалов, достигающийся оптической способностью оптимального сочетания

отражения и поглощения света, а также гладкой поверхностью после лазерной обработки.

Полимерная пленка НПМ012, основой которой является модифицированный поли (огидроксиамид) после маркировки имеет неровный микрорельеф поверхности. Предполагается, что такой шероховатый микрорельеф с эффектом хлопьев мог возникнуть из-за деструкции частично кристаллизованных полимеров. Свет попадает на шероховатую поверхность и рассеивается в разные направления. В этом случае отраженный свет не сфокусирован в точке считывающего устройства, а формирует более широкий угол отражения.

Предполагается, что в пленке НПМ012 низкое содержание белого светоотражающего пигмента, и он поглощает больше световой энергии. Уровень отражения света черного слоя от других пленок не отличается. Но за счет низкого светоотражения белого слоя НПМ012 общий контраст снижается. Пленка НПМ012 оценена на класс ниже, по сравнению с остальными изучаемыми пленочными материалами: ее 2D-кодам присвоен класс «В». Ключевым показателем НПМ012, не удовлетворившим наивысший класс, является невысокая контрастность.

Кремнийорганическая пленка ЛП2 также имеет после маркировки неровный микрорельеф поверхности, как и пленка НПМ012, но благодаря тому, что кремнийорганическое связующее с пигментом белого красителя в пленке ЛП2 обладает высокой светоотражающей способностью, это компенсирует эффект рассеивания света ее шероховатой поверхностью. В результате пленка ЛП2 обеспечивает нанесение 2D-кодов с наивысшим классом «4».

СПИСОК ИСТОЧНИКОВ

- 1. **Schuitemaker Reuben, Xu Xun.** Product traceability in manufacturing: A technical review. Procedia CIRP, 2020, Vol. 93, pp. 700–705. DOI: 10.1016/j.procir.2020.04.078.
- 2. **Ganzulenko O. Y., Petkova A. P.** Testing a nanobarcodes marking technology for identification and protection of the mechanical products. Journal of Physics, 2020, No. 1, pp. 1–7. DOI: 10.1088/1742–6596/1582/1/012032.
- 3. Дзембак Ю. Современные технологии маркировки для электроники и приборостроения // Компоненты и Технологии. 2002. № 26. С. 150–151.
- 4. Горбовец М.А., Славин А.В. Кодированная маркировка образцов для высокотемпературных

- испытаний // Труды ВИАМ. 2019. \mathbb{N} 10 (82). С. 125–132. DOI: 10.18577/2307-6046-2019-0-10-125-132.
- 5. Фомин А.В., Глущенко А.И., Полещенко Д.А., Зорин И.С. Идентификация маркировки стальных заготовок в СПЦ-1 АО «Оскольский электрометаллургический комбинат им. А. А. Угарова» на основе нейросетевого подхода // Управление большими системами. 2022. № (95). С. 62–78. DOI: 10.25728/ubs.2022.95.4.
- 6. **Сырков А.Г., Ячменова Л.А.** Особенности получения металлургической продукции в условиях твердотельного гидридного синтеза // Записки Горного института. 2022, Т. 256. С. 651–662. DOI: 10.31897/PMI.2022.25.
- 7. Санько А.А., Шейников А.А. Автоматическое распознавание нарушений нормальной работы газотурбинного двигателя вертолета по его параметрам и параметрам несущего винта // Вестник Уфимского государственного авиационного технического университета. 2019. Т. 23. № 1 (83). С. 64–69.
- 8. Паноев Н.Ш., Ахмедов В.Н., Хамрокулов Ш.Ш. Получение термоустойчивых покрытий на основе гидролизированных акриловых эмульсий и кремнийорганических соединений // Universum: технические науки. 2020. № 12 (81). С. 27–30.
- 9. **Бажин, В.Ю., Исса Б.** Влияние термической обработки на микроструктуру стальных змеевиков нагревательной трубчатой печи // Записки Горного института. 2021. № 249. С. 393–400. DOI: 10.31897/PMI.2021.3.8.
- 10. **Ahearne E.** Engineering the surface for direct part marking (DPM). CIRP Journal of Manufacturing Science and Technology, 2020, No. 29, pp. 1–10.
- 11. **Li C. L., Lu C., Li J. M.** Nanosecond laser direct-part marking of data matrix symbols on titanium alloy substrates. Key Engineering Materials, 2018, Vol. 764, pp. 194–200.
- 12. Xia-Shuang Li, Wei-Ping He, Lei Lei, Jian Wang, Gai-Fang Guo, Teng-Yun Zhang, Ting Yue. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy. Optics & Laser Technology, 2016, Vol.77, pp. 31–39. DOI: 10.1016/J.OPTLA TEC.2015.08.020.
- 13. **Титова Т.А., Лось Л.А.** Стандартное кодирование книг, журналов и газет посредством штрихового кода // Машиностроение и компьютерные технологии. 2014. № 5. С. 360–381.
- 14. **Shammazov, I.A. Dzhemilev, E.R. Sidorkin, D.I.** Improving the Method of Replacing the Defective Sections of Main Oil and Gas Pipelines Using Laser Scanning Data. Applied Sciences, 2023, No. 13, pp. 1–26. DOI: 10.3390/app13010048.
- 15. Amiaga J.V., Gorny S.G., Vologzhanina S.A. Method of Convex Marking of the Surfaces of Steel Products Using a Pulsed 50-W Infrared Fiber Laser Russian Metal-lurgy. Metally, 2020, Vol. 13, pp. 1513–1517. DOI:10.1134/S0036029520130042.

REFERENCES

- 1. Schuitemaker Reuben, Xu Xun. Product traceability in manufacturing: A technical review. Procedia CIRP, 2020, Vol. 93, pp. 700–705. DOI: 10.1016/j.procir.2020.04.078.
- 2. Ganzulenko O. Y., Petkova A. P. Testing a nanobarcodes marking technology for identification and

Hayкoëмкие технологии при ремонте, восстановлении деталей и нанесении покрытий Science intensive technologies in coating, parts repair and recovery

protection of the mechanical products. Journal of Physics, 2020, No. 1, pp. 1–7. DOI: 10.1088/1742–6596/1582/1/012032.

- 3. Dzembak Yu. Modern marking technologies for electronics and instrumentation // Components and Technologies, 2002, no. 26. pp. 150–151.
- 4. Gorbovets M.A., Slavin A.V. The coded marking of specimens for high-temperature tests/ Proceedings of VIAM, 2019, no. 10 (82), pp. 125–132. DOI: 10.18577/2307-6046-2019-0-10-125-132.
- 5. Fomin A.V., Glushchenko A.I., Poleshchenko D.A., Zorin I.C. Identification of marking of steel billets in SPC-1 JSC "Oskol Electrometallurgical Combine named after A. A. Ugarov" on the basis of a neural network approach // Management of large systems, 2022, no. (95), pp. 62–78. DOI: 10.25728/ubs.2022.95.4.
- 6. Syrkov A.G., Yachmeneva L.A. Features of obtaining metallurgical products under conditions of solid-state hydride synthesis. Journal of Mining Institute, 2022, no. 256. pp. 651–662.DOI: 10.31897/PMI.2022.25.
- 7. Sanko A.A., Shennikov A.A. Automatic recognition of violations of the normal operation of the helicopter gas turbine engine by its parameters and parameters of the main rotor // Bulletin of the Ufa State Aviation Technical University, 2019, vol. 23, no. 1 (83). pp. 64–69.
- 8. Panaev N.S., Akhmedov V.N., Khamrakulov S.S. Obtaining heat-resistant coatings based on hydrolyzed acrylic emulsions and organosilicon compounds // Universum: technical sciences, 2020, no. 12 (81), pp. 27–30.

- 9. Bazhin V.Yu., Isa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute, 2021, no. 249, pp. 393–400. DOI: 10.31897/PMI.2021.3.8.
- 10. Ahearne E. Engineering the surface for direct part marking (DPM). CIRP Journal of Manufacturing Science and Technology, 2020, no. 29, pp. 1–10.
- 11. Li C. L., Lu C., Li J. M. Nanosecond laser direct-part marking of data matrix symbols on titanium alloy substrates. Key Engineering Materials, 2018, Vol. 764, pp. 194–200.
- 12. Xia-Shuang Li, Wei-Ping He, Lei Lei, Jian Wang, Gai-Fang Guo, Teng-Yun Zhang, Ting Yue. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy. Optics & Laser Technology, 2016, Vol. 77, pp. 31–39. DOI: 10.1016/J.OPTLASTEC.2015.08.020.
- 13. Titova T.A., Los L.A. Standard coding of books, magazines and newspapers by barcoding/ Mechanical engineering and computer technologies, 2014, no. 5, pp. 360–381.
- 14. Shammazov I.A. Dzhemilev E.R. Sidorkin D.I. Improving the Method of Replacing the Defective Sections of Main Oil and Gas Pipelines Using Laser Scanning Data. Applied Sciences, 2023, no. 13, pp. 1–26. DOI: 10.3390/app13010048.
- 15. Amiaga J.V., Gorny S.G., Vologzhanina S.A. Method of Convex Marking of the Surfaces of Steel Products Using a Pulsed 50-W Infrared Fiber Laser Russian Metallurgy. Metally, 2020, vol. 13, pp. 1513–1517. DOI:10.1134/S0036029520130042.

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Статья поступила в редакцию 25.04.2023; одобрена после рецензирования 11.05.2023; принята к публикации 17.05.2023.

The article was submitted 25.04.2023; approved after reviewing 11.05.2023; assepted for publication 17.05.2023.

Учредитель и издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный технический университет»

Адрес редакции и издателя: 241035, Брянская область, г. Брянск, бульвар 50 лет Октября, 7 ФГБОУ ВО «Брянский государственный технический университет»

Телефон редакции журнала: 8-903-592-87-39, 8-903-868-85-68.

E-mail: naukatm@yandex.ru, editntm@yandex.ru

Вёрстка Н.А. Лукашов. Редактор Е.В. Лукашова. Технический редактор Н.А. Лукашов. Сдано в набор 17.07.2023. Выход в свет 28.07.2023.

Формат 60 × 84 1/8. Бумага офсетная. Усл. печ. л. 5,58.

тираж 500 экз. Свободная цена.

Отпечатано в лаборатории оперативной полиграфии

Федерального государственного бюджетного образовательного учреждения высшего образования «Брянский государственный технический университет» 241035,

Брянская область, г. Брянск, ул. Институтская, 16