Improving solid waste management in an intersectoral circular economy planning

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the context of the transition from a linear economy to a circular model, it is important to improve approaches to intersectoral planning of economic activity in the context of sustainable development. In this regard, the aim of the study is to improve existing approaches to intersectoral planning of the circular economy based on foreign experience and domestic practice to calculate the degree of transition to a circular economy. The following research methods were used: analysis of approaches to intersectoral planning, development of indicators in solid municipal waste management, modeling, etc. As a result, based on the dual reflection of line and circular economy accounting registers, a modified methodological approach to intersectoral planning is proposed. A calculation model containing complex indicators for the corresponding funds in the context of "linear economy" and "circular economy" is proposed. The results of the study and the proposed methodological approach can be adapted to assess the development potential of the circular economy, economic planning, forecasting, and the development of appropriate programs to stimulate the development of closed-cycle economic sectors.

Sobre autores

Maksim Chashchin

Ural Federal University named after the First President of Russia B.N. Yeltsin

Email: f123503@yandex.ru
Аспирант кафедры Экономика природопользования

Bibliografia

  1. Леонтьев В. Экономические эссе. Теории исследования, факты и политика. - Политиздат, 1990. – 415 c.
  2. Leontiev V.V. Inter-industry economy. Translation from English. - M.: OAO Publishing House Economics, 1997. – 479 p.
  3. Dianqing Xu, Shengliang D., Gruver Gene. The Application of the Leontiev Input-Output Matrix in the Transition Process // Economic Systems Research. – 1992. – № 4. – p. 35-47.
  4. Solow R. M. Technical change and the aggregate production function // Review of Economics and Statistics. – 1957. – № 39 (3). – p. 312–320. – doi: 10.2307/1926047. JSTOR 1926047.
  5. Russell W.M.S., Burch R.L. The Principles of Humane Experimental Technique. - London, UK: Methuen, 1959. – 238 p.
  6. Potting J. Circular Economy: Measuring Innovation in the Product Chain. [Электронный ресурс]. URL: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2016- circular-economy-measuring-innovation-in-product-chains-2544.pdf (дата обращения: 08.06.2022).
  7. Леонтьев В., Форд Д. Межотраслевой анализ воздействия структуры экономики на окружающую среду // Экономика и математические методы. – 1972. – № 3.
  8. Potravny I., Gusev A.., Stoykov A., Gassiy V. Modification of the Leontief-Ford Input-Output Model for the Green Economy Goals and Environment Protection // Journal of Geoscience and Environment Protection. – 2017. – № 5. – p. 15-23.
  9. Vincent Moreau and Guillaume Massard Material and Energy Flow Analysis. [Электронный ресурс]. URL: https://doi.org/10.1093/acrefore/9780199389414.013.109 Published (дата обращения: 29.03.2017г.).
  10. Saber M., Eğilmez G., Gedik R., Park Y.S. A Comparative Time-Series Investigation of China and U.S. Manufacturing Industries’ Global Supply-Chain-Linked Economic, Mid and End-Point Environmental Impacts // Sustainability. – 2021. – № 13. – p. 5819.
  11. Бахвалов Л.А., Напалкова М. А. Cовременное состояние компьютерного моделирования глобальных экономических процессов // Интеллектуальные системы в экономических исследованиях. 1997. – c. 48-62.
  12. Baranov A. O., Pavlov V. N., Tagaeva T. O., Slepenkova Yu. M. Construction and Use of the Regional Input-Output Model with Environmental and Economic Development Blocks // World of Economics and Management. – 2020. – № 3. – p. 27–47. – doi: 10.25205/2542-0429-2020-20-3-27-47.
  13. Колесников Р.В. Совершенствования статистического обеспечения деятельности по управлению твердыми коммунальными отходами с использованием процессов цифровизации // Научный журнал НИУ ИТМО. Серия Экономика и Экологический менеджмент. – 2021. – № 4.
  14. Лебедева А.А., Лебедев Д.А. Индикаторы состояния системы обращения с коммунальными отходами // Инновационная наука. – 2015. – c. 229-231.
  15. Ерыгина А.В. Индикативный подход в управлении устойчивым развитием сферы обращения с твердыми коммунальными отходами // Развитие экономики города. – 2007. – № 8(47). – c. 210-213.
  16. Горячева О. Е., Смирнова Т. А., Говорина О. В Разработка системы показателей мониторинга в сфере переработки твердых коммунальных отходов // Экономика и управление хозяйствующими субъектами Петербургский экономический журнал. – 2019. – № 3. – c. 120-130.
  17. Богатырев А.В. Методы расчета параметров ресурсосберегающих производств // Экономический анализ: теория и практика. – 2009. – № 36(165). – c. 33-36.
  18. Frank F. A., Stevenson T. L. Canning E.F.-J. Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular // Economy Ecological Economics. – 2018. – p. 297-306.
  19. Parchomenko A., Nelenb D., Gillabelb J., Rechbergera H. Measuring the circular economy - A Multiple Correspondence Analysis of 63 metrics // Journal of Cleaner Production. – 2019. – p. 200-216.
  20. Moragaa G., Huysvelda S., Mathieuxc F. Circular economy indicators: What do they measure? // Resources, Conservation and Recycling. – 2019. – p. 452-461.
  21. Supanchaiyamat, N, Hunt A.J.,ChemSusChem2019,12,397 G. A. Blengini,F. Mathieux, P. Nuss,L.TalensPeiró,Towardsrecyclingindicatorsbasedon EU flows and raw materialssystemanalysisdata, EU. 2018. doi: 10.2760/092885
  22. Scott G.M. Chapter 10 - Recovered PaperWaste. - A Handbook for Management 2011, 2011. – 137-149 p.
  23. Кузьминова Т. Опыт Гринпис в раздельном сборе ТКО. [Электронный ресурс]. URL: https://greenpeace.ru/how-to/2020/08/19/kak-organizovat-razdelnyj-sbor-v-universitete/ (дата обращения: 12.07.2022).
  24. Руткаускас Т.К., Чащин М.Р., Руткаускас К.В. Интегрированный портрет потребителя в условиях развития устойчивых взаимоотношений на рынке жилищно-коммунальных услуг // Жилищные стратегии. – 2020. – № 2. – c. 181-208. – doi: 10.18334/zhs.7.2.110176.
  25. Plastinina Iu.V., Berezyuk M.V., Rumyantseva A.V., Chaschin М.R. New waste management within Russian Universities // Russian Journal of Resources, Conservation and Recycling. – 2021. – № 3(8). – doi: 10.15862/07ECOR321.
  26. Волкова А.В. Рынок утилизации отходов. Высшая школа экономики. Центр развития. [Электронный ресурс]. URL: https://dcenter.hse.ru/data/2018/07/11/1151608260 (дата обращения: 02.12.2022).
  27. Joaquim J.M. Guilhoto Input-Output Models Applied to Environmental Analysis doi: 10.1093/acrefore/9780199389414.013.573

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Chashchin M.R., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».