Разработка реассортантных гриппозных вакцин: классическое скрещивание или обратная генетика?
- Авторы: Киселева И.В.1, Руденко Л.Г.1
-
Учреждения:
- ФГБНУ Институт экспериментальной медицины
- Выпуск: Том 13, № 2 (2023)
- Страницы: 209-218
- Раздел: ОБЗОРЫ
- URL: https://bakhtiniada.ru/2220-7619/article/view/147818
- DOI: https://doi.org/10.15789/2220-7619-DOR-2449
- ID: 147818
Цитировать
Полный текст
Аннотация
Важной особенностью гриппозных вакцин, отличающей их от других иммунобиологических препаратов, является то, что они не имеют постоянного состава. В связи с непрерывной антигенной изменчивостью вируса гриппа производство вакцин нуждается в своевременном обеспечении актуальными вакцинными штаммами, что невозможно при отсутствии адекватного метода своевременной, быстрой и бесперебойной подготовки вакцинных штаммов. Среди лицензированных гриппозных вакцин особое место занимают классические инактивированные и живые гриппозные вакцины. Их основу составляют реассортантные вакцинные штаммы, полученные при скрещивании актуального циркулирующего вируса гриппа с так называемым донорским штаммом (холодоадаптированным донором аттенуации для живых гриппозных вакцин или донором высокой урожайности для инактивированных вакцин). Вакцинные штаммы для лицензированных живых аттенуированных гриппозных вакцин представляют собой реассортантные вирусы с так называемой формулой генома 6:2 — два гена, кодирующих гемагглютинин и нейраминидазу (НА и NA) принадлежат актуальному эпидемическому вирусу, а шесть генов, кодирующих внутренние белки (PB2, PB1, PA, NP, M и NS) — холодоадаптированному донору аттенуации. Доноров аттенуации существует очень ограниченное количество. В России это холодоадаптированные вирусы А/Ленинград/134/17/57 (H2N2) и В/СССР/60/69, в США (компания MedImmune) — вирусы А/Ann Arbor/6/60ca (H2N2) и В/Ann Arbor/1/66ca. MedImmune производит вакцинные штаммы методом обратной генетики. Для других стран использование этого подхода для получения вакцин ограничено необходимостью приобретения лицензии у патентообладателей. В России пока не разрешены генетические манипуляции со штаммами для сезонной живой гриппозной вакцины, поэтому реассортанты для отечественной живой гриппозной вакцины создаются только путем классической реассортации в куриных эмбрионах. Штаммы для инактивированной гриппозной вакцины готовят только методом класической реассортации, требования к ним более гибкие и допускают различные сочетания генов от «дикого» вируса и донорского штамма. В качестве доноров внутренних генов используют высокоурожайные вирусы, такие как A/PR/8/34 (H1N1), A/Texas/1/77 (H3N2), B/Lee/40 и некоторые другие. К сожалению, метод классической реассортации не всегда позволяет оперативно получить реассортантный вирус с формулой генома 6:2. Этому мешает ряд причин, начиная с уникальных свойств конкретного эпидемического вируса и заканчивая констелляцией генов. Метод обратной генетики на основе плазмид представляет собой альтернативный подход к созданию реассортантных вакцинных штаммов, который позволяет гарантированно и быстро получать реассортантные вирусы заданной формулы генома 6:2. Однако и этот метод имеет определенные слабые места. В настоящем обзоре рассматриваются преимущества и недостатки подготовки реассортантных гриппозных вакцин методами обратной генетики и классической реассортации в развивающихся куриных эмбрионах.
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Васильевна Киселева
ФГБНУ Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: irina.v.kiseleva@mail.ru
д.б.н., профессор, зав. лабораторией общей вирусологии; профессор кафедры фундаментальных проблем медицины и медицинских технологий
Россия, Санкт-ПетербургЛариса Георгиевна Руденко
ФГБНУ Институт экспериментальной медицины
Email: irina.v.kiseleva@mail.ru
д.м.н., профессор, зав. отделом вирусологии им. А.А. Смородинцева
Россия, Санкт-ПетербургСписок литературы
- Жданов В.М., Александрова Г.И., Гендон Ю.З. Живая гриппозная рекомбинантная вакцина в СССР: Разработка, изучение и практическое использование // Журнал микробиологии, эпидемиологии и иммунобиологии. 1986. № 7. С. 3–14. [Zhdanov V.M., Alexandrova G.I., Ghendon Y.Z. Live influenza recombinant vaccine in the USSR: Development, study and practical use. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 1986, no. 7, pp. 3–14. (In Russ.)]
- Киселева И.В., Баженова Е.А., Ларионова Н.В., Федорова Е.А., Дубровина И.А., Исакова-Сивак И.Н., Руденко Л.Г. Особенности реассортации современных штаммов вируса гриппа с донорами аттенуации живой гриппозной вакцины // Вопросы вирусологии. 2013. Т. 58, № 5. С. 26–31. [Kiseleva I.V., Bazhenova E.A., Larionova N.V., Fedorova E.A., Dubrovina I.A., Isakova-Sivak I.N., Rudenko L.G. Peculiarity of reassortment of current wild type influenza viruses with master donor viruses for live influenza vaccine. Voprosy virusologii = Problems of Virology, 2013, vol. 58, no. 5, pp. 26–31. (In Russ.)]
- Ларионова Н.В., Киселева И.В., Баженова Е.А., Григорьева Е.П., Руденко Л.Г. Влияние биологических свойств сезонных вирусов гриппа на эффективность подготовки штаммов живой гриппозной вакцины // Журнал микробиологии, эпидемиологии и иммунобиологии. 2019. № 5. С. 24–34. [Larionova N.V., Kiseleva I.V., Bazhenova E.A., Grigorieva E.P., Rudenko L.G. The influence of seasonal influenza viruses biological features on the effectiveness of development strains for live influenza vaccine. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2019, no. 5, pp. 24–34. (In Russ.)] doi: 10.36233/0372-9311-2019-5-24-34
- Ларионова Н.В., Киселева И.В., Руденко Л.Г. Эволюция вирусов гриппа по признаку чувствительности к температуре репродукции // Журнал микробиологии, эпидемиологии и иммунобиологии. 2019. № 6. С. 47–55. [Larionova N.V., Kiseleva I.V., Rudenko L.G. Evolution of influenza viruses based on sensitivity to temperature of replication. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2019, no. 6, pp. 47–55. (In Russ.)] doi: 10.36233/0372-9311-2019-6-47-55
- Ларионова Н.В., Киселева И.В., Исакова И.Н., Литвинова О.М., Руденко Л.Г. Фенотипические особенности эпидемических штаммов вируса гриппа В разных лет выделения // Вопросы вирусологии. 2006. № 5. С. 38–41. [Larionova N., Kiseleva I., Isakova I., Litvinova O., Rudenko L. Naturally occuring temperature-sensitive strains of influenza B virus. Voprosy virusologii = Problems of Virology, 2006, vol. 51, no. 5, pp. 38–41. (In Russ.)]
- Ambrose C.S., Luke C., Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir. Viruses, 2008, vol. 2, no. 6, pp. 193–202. doi: 10.1111/j.1750-2659.2008.00056.x
- Baez M., Palese P., Kilbourne E.D. Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis., 1980, vol. 141, no. 3, pp. 362–365. doi: 10.1093/infdis/141.3.362
- Bazhenova E., Kiseleva I., Isakova-Sivak I., Kotomina T. Two alternative approaches to generate live attenuated influenza vaccine candidates against potentially pandemic avian influenza H7N9 virus. Biomed. J. Sci. Tech. Res., 2018, vol. 3, no. 4, pp. 3363–3365. doi: 10.26717/BJSTR.2018.03.000925
- Blanco-Lobo P., Nogales A., Rodríguez L., Martínez-Sobrido L. Novel approaches for the development of live attenuated influenza vaccines. Viruses, 2019, vol. 11, no. 2: 190. doi: 10.3390/v11020190
- Carter N.J., Curran M.P. Live attenuated influenza vaccine (Flumist®; FluenztmTM): A review of its use in the prevention of seasonal influenza in children and adults. Drugs, 2011, vol. 71, no. 12, pp. 1591–1622. doi: 10.2165/11206860-000000000-00000
- Costello D.A., Whittaker G.R., Daniel S. Variations in pH sensitivity, acid stability, and fusogenicity of three influenza virus H3 subtypes. J. Virol., 2015, vol. 89, no. 1, pp. 350–360. doi: 10.1128/jvi.01927-14
- Desheva J.A., Lu X.H., Rekstin A.R., Rudenko L.G., Swayne D.E., Cox N.J., Katz J.M., Klimov A.I. Characterization of an influenza A/H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine, 2006, vol. 24, no. 47–48, pp. 6859–6866. doi: 10.1016/j.vaccine.2006.06.023
- Fodor E., Devenish L., Engelhardt O.G., Palese P., Brownlee G.G., García-Sastre A. Rescue of influenza a virus from recombinant DNA. J. Virol., 1999, vol. 73, no. 11, pp. 9679–9682. doi: 10.1128/jvi.73.11.9679-9682.1999
- Fulvini A.A., Ramanunninair M., Le J., Pokorny B.A., Arroyo J.M., Silverman J., Devis R., Bucher D. Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production. PLoS One, 2011, vol. 6, no. 6: e20823. doi: 10.1371/journal.pone.0020823
- Gilbertson B., Zheng T., Gerber M., Printz-Schweigert A., Ong C., Marquet R., Isel C., Rockman S., Brown L. Influenza NA and PB1 gene segments interact during the formation of viral progeny: localization of the binding region within the PB1 gene. Viruses, 2016, vol. 8, no. 8: 238. doi: 10.3390/v8080238
- Hoffmann E., Krauss S., Perez D., Webby R., Webster R.G. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, vol. 20, no. 25–26, pp. 3165–3170. doi: 10.1016/s0264-410x(02)00268-2
- Hussain S., Turnbull M.L., Pinto R.M., McCauley J.W., Engelhardt O.G., Digard P. Segment 2 from Influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. J. Gen. Virol., 2019, vol. 100, no. 7, pp. 1079–1092. doi: 10.1099/jgv.0.001279
- Ito T., Suzuki Y., Mitnaul L., Vines A., Kida H., Kawaoka Y. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology, 1997, vol. 227, no. 2, pp. 493–499. doi: 10.1006/viro.1996.8323
- Jin H., Subbarao K. Live attenuated influenza vaccine. Curr. Top. Microbiol. Immunol., 2015, vol. 386, pp. 181–204. doi: 10.1007/82_2014_410
- Johansson B.E., Bucher D.J., Pokorny B.A., Mikhail A., Kilbourne E.D. Identification of PR8 M1 protein in influenza virus high-yield reassortants by M1-specific monoclonal antibodies. Virology, 1989, vol. 171, no. 2, pp. 634–636. doi: 10.1016/0042-6822(89)90638-7
- Kiseleva I., Larionova N., Fedorova E., Bazhenova E., Dubrovina I., Isakova-Sivak I., Rudenko L. Contribution of neuraminidase of influenza viruses to the sensitivity to sera inhibitors and reassortment efficiency. Open Microbiol. J., 2014, vol. 8, pp. 59–70. doi: 10.2174/1874285801408010059
- Kiseleva I.V., Larionova N.V., Fedorova E.A., Isakova-Sivak I.N., Rudenko L.G. New methodological approaches in the development of Russian live attenuated vaccine for pandemic influenza. Translational Biomedicine, 2015, vol. 6, no. 2: 13, pp. 1–9. doi: 10.21767/2172-0479.100013
- Kiseleva I.V., Voeten J.T.M., Teley L.C.P., Larionova N.V., Drieszen-van der Cruijsen S.K.M., Basten S.M.C., Heldens J.G.M., van den Bosch H., Rudenko L.G. PB2 and PA genes control the expression of the temperature-sensitive phenotype of cold-adapted B/USSR/60/69 influenza master donor virus. J. Gen. Virol., 2010, vol. 91, pt 4, pp. 931–937. doi: 10.1099/vir.0.017996-0
- Krizanová O., Rathová V. Serum inhibitors of myxoviruses. Curr. Top. Microbiol. Immunol., 1969, vol. 4, pp. 125–151. doi: 10.1007/978-3-642-46160-6_6
- Kumar A., Meldgaard T.S., Bertholet S. Novel platforms for the development of a universal influenza vaccine. Front. Immunol., 2018, vol. 9: pp. 600. doi: 10.3389/fimmu.2018.00600
- Larionova N., Kiseleva I., Dubrovina I., Bazhenova E., Rudenko L. Peculiarities of reassortment of a cold-adapted influenza a master donor virus with influenza A viruses containing hemagglutinin and neuraminidase of avian H5N1 origin. Influenza Other Respir. Viruses, 2011, vol. 5, suppl. 1, pp. 346–349.
- Larionova N., Kiseleva I., Isakova-Sivak I., Rekstin A., Dubrovina I., Bazhenova E., Ross T.M., Swayne D., Gubareva L., Tsvetnitsky V., Fedorova E., Doroshenko E., Rudenko L. Live attenuated influenza vaccines against highly pathogenic H5N1 avian influenza: development and preclinical characterization. J. Vaccines Vaccin., 2013, vol. 4, no. 8, pp. 1–11. doi: 10.4172/2157-7560.1000208
- Le J., Orff E.J., Fulvini A.A., Huang L., Onodera S., Pokorny B.A., Malewicz A., Primakov P., Bucher D.J. Development of high yield reassortants for influenza type B viruses and analysis of their gene compositions. Vaccine, 2015, vol. 33, no. 7, pp. 879–884. doi: 10.1016/j.vaccine.2014.12.027
- Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol., 2018, vol. 37, no. 5, pp. 266–276. doi: 10.1080/08830185.2018.1500570
- Maassab H.F., Bryant M.L. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med. Virol., 1999, vol. 9, no. 4, pp. 237–244. doi: 10.1002/(sici)1099-1654(199910/12)9:4<237::aid-rmv252>3.0.co;2-g
- Matrosovich M., Gao P., Kawaoka Y. Molecular mechanisms of serum resistance of human influenza H3N2 virus and their involvement in virus adaptation in a new host. J. Virol., 1998, vol. 72, no. 8, pp. 6373–6380. doi: 10.1128/jvi.72.8.6373-6380.1998
- Mohn K.G., Smith I., Sjursen H., Cox R.J. Immune responses after live attenuated influenza vaccination. Hum. Vaccin. Immunother., 2018, vol. 14, no. 3, pp. 571–578. doi: 10.1080/21645515.2017.1377376
- Nakowitsch S., Wolschek M., Morokutti A., Ruthsatz T., Krenn B.M., Ferko B., Ferstl N., Triendl A., Muster T., Egorov A., Romanova J. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine, 2011, vol. 29, no. 19, pp. 3517–3524. doi: 10.1016/j.vaccine.2011.02.100
- Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D.R., Donis R., Hoffmann E., Hobom G., Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl Acad. Sci. USA, 1999, vol. 96, no. 16, pp. 9345–9350. doi: 10.1073/pnas.96.16.9345
- NIBSC. Candidate influenza vaccine viruses. 2022. Accessed 21 January 2023. URL: https://www.nibsc.org/science_and_research/virology/influenza_resource_/full_reagent_update.aspx
- NIBSC. Influenza reagents. 2022. Accessed 21 January 2023. URL: https://nibsc.org/products/brm_product_catalogue/influenza_reagents.aspx
- Rogers G.N., D’Souza B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 1989, vol. 173, no. 1, pp. 317–322. doi: 10.1016/0042-6822(89)90249-3
- Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology, 1983, vol. 131, no. 2, pp. 394–408. doi: 10.1016/0042-6822(83)90507-x
- Rota P.A., Wallis T.R., Harmon M.W., Rota J.S., Kendal A.P., Nerome K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology, 1990, vol. 175, no. 1, pp. 59–68. doi: 10.1016/0042-6822(90)90186-u
- Rudenko L., Desheva J., Korovkin S., Mironov A., Rekstin A., Grigorieva E., Donina S., Gambaryan A., Katlinsky A. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials). Influenza Other Respir. Viruses, 2008, vol. 2, no. 6, pp. 203–209. doi: 10.1111/j.1750-2659.2008.00064.x
- Rudenko L., Kiseleva I., Stukova M., Erofeeva M., Naykhin A., Donina S., Larionova N., Pisareva M., Krivitskaya V., Flores J. Clinical testing of pre-pandemic live attenuated A/H5N2 influenza candidate vaccine in adult volunteers: results from a placebo-controlled, randomized double-blind phase I study. Vaccine, 2015, vol. 33, no. 39, pp. 5110–5117. doi: 10.1016/j.vaccine.2015.08.019
- Rudneva I.A., Timofeeva T.A., Shilov A.A., Kochergin-Nikitsky K.S., Varich N.L., Ilyushina N.A., Gambaryan A.S., Krylov P.S., Kaverin N.V. Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants. Arch. Virol., 2007, vol. 152, no. 6, pp. 1139–1145. doi: 10.1007/s00705-006-0931-8
- Ryan-Poirier K.A., Kawaoka Y. Distinct glycoprotein inhibitors of influenza A virus in different animal sera. J. Virol., 1991, vol. 65, no. 1, pp. 389–395. doi: 10.1128/jvi.65.1.389-395.1991
- Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, vol. 230, no. 4732, pp. 1350–1354. doi: 10.1126/science.2999980
- Shcherbik S., Pearce N., Carney P., Bazhenova E., Larionova N., Kiseleva I., Rudenko L., Kumar A., Goldsmith C.S., Dugan V., Stevens J., Wentworth D.E., Bousse T. Evaluation of A(H1N1)Pdm09 LAIV vaccine candidates stability and replication efficiency in primary human nasal epithelial cells. Vaccine X., 2019, vol. 2: 100031. doi: 10.1016/j.jvacx.2019.100031
- Shcherbik S., Pearce N., Kiseleva I., Larionova N., Rudenko L., Xu X., Wentworth D.E., Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J. Virol. Methods, 2016, vol. 227, pp. 33–39. doi: 10.1016/j.jviromet.2015.10.009
- Shcherbik S.V., Pearce N.C., Levine M.L., Klimov A.I., Villanueva J.M., Bousse T.L. Rapid strategy for screening by pyrosequencing of influenza virus reassortants-candidates for live attenuated vaccines. PLoS One, 2014, vol. 9, no. 3: e92580. doi: 10.1371/journal.pone.0092580
- Singanayagam A., Zambon M., Barclay W.S. Influenza virus with increased pH of hemagglutinin activation has improved replication in cell culture but at the cost of infectivity in human airway epithelium. J. Virol., 2019, vol. 93, no. 17: e00058–19. doi: 10.1128/jvi.00058-19
- Subbarao K., Webster R.G., Kawaoka Y., Murphy B.R. Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses? Virus Res, 1995, vol. 39, no. 2–3, pp. 105–118. doi: 10.1016/0168-1702(95)00082-8
- Taubenberger J.K., Reid A.H., Krafft A.E., Bijwaard K.E., Fanning T.G. Initial genetic characterization of the 1918 Spanish influenza virus. Science, 1997, vol. 275, no. 5307, pp. 1793–1796. doi: 10.1126/science.275.5307.1793
- Trombetta C.M., Ulivieri C., Cox R.J., Remarque E.J., Centi C., Perini D., Piccini G., Rossi S., Marchi S., Montomoli E. Impact of erythrocyte species on assays for influenza serology. J. Prev. Med. Hyg., 2018, vol. 59, no. 1, pp. E1-E7. doi: 10.15167/2421-4248/jpmh2018.59.1.870
- Tumpey T.M., Basler C.F., Aguilar P.V., Zeng H., Solórzano A., Swayne D.E., Cox N.J., Katz J.M., Taubenberger J.K., Palese P., García-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005, vol. 310, no. 5745, pp. 77–80. doi: 10.1126/science.1119392
- Wareing M.D., Marsh G.A., Tannock G.A. Preparation and characterisation of attenuated cold-adapted influenza a reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine, 2002, vol. 20, no. 16, pp. 2082–2090. doi: 10.1016/s0264-410x(02)00056-7
- WHO. Availability of two new candidate reassortant vaccine viruses for pandemic (H1N1) 2009 virus vaccine development. 14 September 2009. URL: https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations/candidate-vaccine-viruses/docs/default-source/influenza/cvvs/archive-2009/200908-1 (Accessed 21 January 2023)
- WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. URL: https://apps.who.int/iris/bitstream/handle/10665/44518/9789241548090_eng.pdf?sequence=1 (Accessed 4 December 2020)
- WHO. Recommendations for the production and control of influenza vaccine (inactivated). Annex 3. TRS No 977. 2013. URL: https://cdn.who.int/media/docs/default-source/biologicals/vaccine-quality/recommendations-for-the-production-and-control-of-influenza-vaccine-(inactivated)b0ed4c58-8154-496d-bf91-624734826500.pdf?sfvrsn=cfcd1432_1&download=true (Accessed 21 January 2023)
- WHO. Recommendations to assure the quality, safety and efficacy of influenza vaccines (human, live attenuated) for intranasal administration. Annex 4, TRS No 977. 2013. URL: https://cdn.who.int/media/docs/default-source/biologicals/vaccine-standardization/influenza/trs_977_annex_4.pdf?sfvrsn=92690fd7_3&download=true (Accessed 21 January 2023)
- WHO. Vaccines against Influenza: WHO position paper. 2022. URL: https://apps.who.int/iris/bitstream/handle/10665/354264/WER9719-eng-fre.pdf (Accessed 21 January 2023)
- Wolkerstorfer A., Katinger D., Romanova J. Factors affecting the immunogenicity of the live attenuated influenza vaccine produced in continuous cell line. Microbiology Independent Research Journal, 2016, no. 3, pp. 13–24. doi: 10.18527/2500-2236-2016-3-1-13-24
- Wong S.S., Webby R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev., 2013, vol. 26, no. 3, pp. 476–492. doi: 10.1128/cmr.00097-12
Дополнительные файлы
