Energy Function for Direct Products of Discrete Dynamical Systems
- Autores: Barinova M.K.1, Shustova E.K.1
-
Afiliações:
- National Research University «High School of Economics»
- Edição: Volume 25, Nº 2 (2023)
- Páginas: 11-21
- Seção: Mathematics
- ##submission.dateSubmitted##: 16.12.2025
- ##submission.dateAccepted##: 16.12.2025
- ##submission.datePublished##: 24.12.2025
- URL: https://bakhtiniada.ru/2079-6900/article/view/358398
- DOI: https://doi.org/10.15507/2079-6900.25.202302.11-21
- ID: 358398
Citar
Texto integral
Resumo
This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.
Sobre autores
Marina Barinova
National Research University «High School of Economics»
Email: mkbarinova@yandex.ru
ORCID ID: 0000-0002-4406-583X
Senior Research Fellow
Rússia, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, RussiaEvgenia Shustova
National Research University «High School of Economics»
Autor responsável pela correspondência
Email: ekshustova@gmail.com
ORCID ID: 0000-0002-4998-2186
student
25/12 B. Pecherskaya St., Nizhny Novgorod 603150, RussiaBibliografia
- C. Conley, "Isolated invariant sets and Morse index", 1978, 89 p.
- K. Meyer, "Energy functions for Morse–Smale systems", Amer. J. Math, 90:4 (1968), 1031—1040. DOI: https://doi.org/10.2307/2373287
- S. Smale, "On gradient dynamical systems", Annals Math, 74:1 (1961), 199—206. DOI: https://doi.org/10.2307/1970311
- J. Franks, "Nonsingular Smale flow on S3", Topology, 24:3 (1985), 265-282. DOI: https://doi.org/10.1016/0040-9383(85)90002-3
- M. Shub, "Morse-Smale diffeomorphism are unipotent on homology", Dynamical Systems, 1973, 489-491. DOI: https://doi.org/10.1016/B978-0-12-550350-1.50040-0
- F. Takens, "Tolerance stability, Dynamical systems -Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E.C. Zeeman on his fiftieth birthday, Lecture Notes in Math., vol. 468, Springer, 1975), 1974, 293-304.
- V. Z. Grines, F. Laudenbach, O.V. Pochinka, "Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds", Proceedings of the Steklov Institute of Mathematics, 278 (2012), 27–40. DOI: https://doi.org/10.1134/S0081543812060041
- M. Barinova, V. Grines, O. Pochinka, B. Yu, "Existence of an energy function
- for three-dimensional chaotic "sink-source" cascades jour Chaos", 31:6 (2021). DOI:
- https://doi.org/10.1063/5.0026293
- V. Z. Grines, M.K. Noskova, O. V. Pochinka, "Construction of an energy function for A-diffeomorphisms of two-dimensional non-wandering sets on 3-manifolds", Zhurnal SVMO, 17:3 (2015), 12–17.
- D. Pixton, "Wild unstable manifolds", Topology, 16:2 (1977), 167—172. DOI: https://doi.org/10.1016/0040-9383(77)90014-3
- M. Barinova, "On existence of an energy function for ω-stable surface Diffeomorphisms, Lobachevskii Journal of Mathematics, 42:14 (2021), 3317–3323. DOI: https://doi.org/10.1134/S1995080222020020
- V. Grines, O. Pochinka, "Constructing energy function for certain classes of omegastable and diffeomorphisms on manifolds od dimention 2 and 3", Journal of Mathematical Sciences, 63:2 (2017), 191–222 (In Russ.). DOI: https://doi.org/10.22363/2413-3639-2017-63-2-191-222
- M.K. Barinova, E.K. Shustova, "Dynamical properties of direct products of discrete dynamical systems", Zhurnal SVMO, 24:1 (2022), 21-30 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.24.202201.21-30
- S. Smale, "Differentiable dynamical systems", Russian Mathematical Surveys, 25:1 (1970), 113–185 (In Russ.).
Arquivos suplementares


