Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva


Journal publishing original papers and reviews on new significant results of scientific research in fundamental and applied mathematics. Articles about most significant events in mathematical life in Russia and abroad are also published here.

Media registration certificate: ПИ № ФС 77 - 71362 от 17.10.2017

Editor-in-Chief

Vladimir Fedorovich Tishkin, corresponding member of RAS, Dr. Sci. (Phys.-Math.), Full professor

Frequency / Access

4 issues per year / Open

Included in

Higher Attestation Commission List, RISC, Scopus, Math-Net, zbMATH

Journal Section:

  • Mathematics
  • Applied mathematics and mechanics
  • Mathematical modeling and computer science
  • Mathematical life

 

 

 

 

 

 

 

 

 


Current Issue

Vol 25, No 2 (2023)

Cover Page

Full Issue

Mathematics

Energy Function for Direct Products of Discrete Dynamical Systems
Barinova M.K., Shustova E.K.
Abstract

This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):11-21
pages 11-21 views
On global extrema of power Takagi functions
Galkin O.E., Galkina S.Y., Tronov A.A.
Abstract

By construction, power Takagi functions Sp are similar to Takagi's continuous nowhere differentiable function described in 1903. These real-valued functions Sp have one real parameter p>0. They are defined on the real axis RR"> by the series Sp(x)=∑n=0 (S0(2nx)/2n)p, where S0(x) is the distance from real number x to the nearest integer number. We show that for every p>0, the functions Sp are everywhere continuous, but nowhere differentiable on R. Next, we derive functional equations for Takagi power functions. With these, it is possible, in particular, to calculate the values Sp(x) at rational points x. In addition, for all values of the parameter p from the interval (0; 1), we find the global extrema of the functions Sp, as well as the points where they are reached. It turns out that the global maximum of Sp equals to 2p/(3p(2p-1)) and is reached only at points q+1/3 and q+2/3, where q is an arbitrary integer. The global minimum of the functions Sp equals to 0 and is reached only at integer points. Using the results on global extremes, we obtain two-sided estimates for the functions Sp and find the points at which these estimates are reached.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):22-36
pages 22-36 views
Bicolor Graph of Morse-Smale Cascades on Manifolds of Dimension Three
Gurevich E.Y., Rodionova E.K.
Abstract

The purpose of this study is to single out a class of Morse-Smale cascades (diffeomorphisms) with a three-dimensional phase space that allow topological classification using combinatorial invariants. In the general case, an obstacle to such a classification is the possibility of wild embedding of separatrix closures in the ambient manifold, which leads to a countable set of topologically nonequivalent systems. To solve the problem, we study the orbit space of a cascade. The ambient manifold of a diffeomorphism can be represented as a union of three pairwise disjoint sets: a connected attractor and a repeller whose dimension does not exceed one, and their complement consisting of wandering points of a cascade called the characteristic set. It is known that the topology of the orbit space of the restriction of the Morse-Smale diffeomorphism to the characteristic set and the embedding of the projections of two-dimensional separatrices into it is a complete topological invariant for Morse-Smale cascades on three-dimensional manifolds. Moreover, a criterion for the inclusion of Morse-Smale cascades in the topological flow was obtained earlier.These results are used in this paper to show that the topological conjugacy classes of Morse-Smale cascades that are included in a topological flow and do not have heteroclinic curves admit a combinatorial description. More exactly, the class of Morse-Smale diffeomorphisms without heteroclinic intersections, defined on closed three-dimensional manifolds included in topological flows and not having heteroclinic curves, is considered. Each cascade from this class is associated with a two-color graph describing the mutual arrangement of two-dimensional separatrices of saddle periodic points. It is proved that the existence of an isomorphism of two-color graphs that preserves the color of edges is a necessary and sufficient condition for the topological conjugacy of cascades. It is shown that the speed of the algorithm that distinguishes two-color graphs depends polynomially on the number of its vertices. An algorithm for constructing a representative of each topological conjugacy class is described.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):37-52
pages 37-52 views
Anisotropic Transport of Dielectric Particles by a Uniform Electric Field in an Inhomogeneously Heated Viscous Fluid
Martynov S.I.
Abstract

The anisotropic transfer of dielectric particles by a uniform electric field in a nonuniformly heated fluid is modeled. The transport anisotropy is determined by the mechanism of interaction between particles whose permittivity depends on temperature. The temperature distribution in the particles and in the fluid is determined by their thermal diffusivity and does not depend on the motion of the fluid, thus corresponding to small Peclet numbers. The fluid flow is considered in the approximation of small Reynolds numbers. The transfer of particles is due to the action of an anisotropic force exerted by applied uniform electric field and friction forces exerted by the fluid. The interaction of particles is taken into account. Numerical modeling of anisotropic transport dynamics of two dielectric particles is carried out. The process mentioned depends on the mutual orientation of electric field vector, temperature gradient, and initial orientation of the vector connecting the particle centers. For the case of a large number of particles, an anisotropic equilibrium distribution of the particle concentration in an external electric field is found taking into account the mechanisms of their diffusion and interaction.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):53-61
pages 53-61 views
On the reduction of the topological classification of gradient-like flows problem to the classification of polar flows
Saraev I.A.
Abstract

In this paper we consider a class G(Mn) of gradient-like flows on connected closed manifolds of dimension n ≥ 4 such that for any flow ft G(Mn) stable and unstable invariant manifolds of saddle equilibria do not intersect invariant manifolds of other saddle equilibria. It is known that the ambient manifold of any flow gft from the class G(Mn) can be splitted into connected summ of the sphere Sn, gft  ≥ 0 copies of direct products Sn-1 x S1,and a simply connected manifold which is not homeomorphic to the sphere. The number gft is determined only by the number of nodal equilibria and the number of saddle equilibria such that one of their invariant manifolds has the dimension (n-1) (we call such equilibria trivial saddles). A simply connected manifold which is not homeomorphic to the sphere presents in the splitting if and only if the set of saddle equilibria contains points with unstable manifolds of dimension {2,...,n-2} (we call such equilibria non-trivial saddles). Moreover, the complete topological classification was obtained for flows from the class G(Mn) without non-trivial saddles. In this paper we prove that for any flow ft G(Mn) the carrier manifold can be splitted into a connected sum along pairwise disjoint smoothly embedded spheres (separating spheres) that do not contain equilibrium states of the flow ft and transversally intersect its trajectories. The restriction of the flow ft to the complements to these spheres uniquely (up to topological equivalence and numbering) defines a finite set of flows ft1,...,ftl defined on the components of a connected sum. Moreover, for any j ∈ {1,...,l}, the set of saddle equilibria of the flow ftj onsists either only of trivial saddles or only of of non-trivial ones and then the flow ftj is polar. We introduce the notion of consistent topological equivalence for flows j ∈ {1,...,l} and show that flows ft , f'tG(Mn) are topologically equivalent if and only if for each of these flows the set of separating spheres exists that defines consistently topologically equivalent flows on the components of the connected sum.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):62-75
pages 62-75 views

Mathematical life

To the 75th anniversary of Petr Aleksandrovich Velmisov
Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(2):76-76
pages 76-76 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».