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Abstract. Malware detection is essential in cybersecurity, yet its accuracy is
often compromised by class imbalance and limited labeled data. This study
leverages conditional Generative Adversarial Networks (cGANs) to generate
synthetic malware samples, addressing these challenges by augmenting the
minority class.

The cGAN model generates realistic malware samples conditioned on class
labels, balancing the dataset without altering the benign class. Applied to the
CICMalDroid2020 dataset, the augmented data is used to train a LightGBM
model, leading to improved detection accuracy, particularly for underrepresented
malware classes.

The results demonstrate the efficacy of cGANs as a robust data augmentation
tool, enhancing the performance and reliability of machine learning-based
malware detection systems.
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Introduction

Malware refers to malicious software intended to disrupt operations,
deny access to services, collect personal data without the user’s consent,
gain unauthorized access to system resources, or engage in other harmful
activities. The rapid advancement of information technology has led to
an exponential rise in malware, making it one of the primary threats to
computer security [1–3].

Malware detection methods can be broadly categorized into two
main types: signature-based detection and behavior-based detection [4].
Signature-based detection relies on known malware patterns or signatures,
making it highly effective at identifying previously encountered threats.

However, it struggles to detect novel or evolving malware variants.
On the other hand, behavior-based detection analyzes the actions and
behaviors of programs to identify malicious intent, even in unknown or
zero-day threats. While behavior-based methods provide more robust
protection against new threats, they often come with higher computational
costs and the potential for false positives [4].

As malware continues to evolve and adapt, traditional detection
methods face significant limitations. Signature-based methods cannot keep
up with the sheer volume of new malware variants, while behavior-based
methods, although more adaptive, can be resource-intensive and prone to
inaccuracies in complex environments.

Moreover, the challenge of class imbalance—where benign files vastly
outnumber malware samples—further complicates the development of effec-
tive detection models. This imbalance can lead to poor generalization,
causing machine learning models to misclassify malware or fail to detect it
altogether.

To address these issues, recent advancements have explored machine
learning and data augmentation techniques, particularly Generative
Adversarial Networks (GANs), to enhance malware detection [4–6]. By
generating synthetic malware samples, GANs help balance the dataset and
improve model performance in detecting underrepresented malware classes.

Our study focuses on employing cGANs to augment malware datasets,
addressing the class imbalance problem and enhancing the detection
capabilities of machine learning models.

This paper presents the following key contributions:
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• cGAN for Malware Data Augmentation: conditional GANs are
applied to generate synthetic malware samples, addressing the class
imbalance issue in malware detection datasets.

• Comparative Evaluation: a thorough evaluation of machine
learning models on imbalanced and augmented datasets is conducted,
highlighting the benefits of cGAN-generated data in improving model
performance.

• Reproducible Methodology: a detailed, reproducible experimental
design for applying cGANs in cybersecurity is outlined to improve
detection accuracy and reliability.

These contributions help advance malware detection by addressing
class imbalance and improving model performance against diverse threats.

The paper is organized as follows:

Section 1 reviews existing malware detection techniques and the
application of GANs for data augmentation.

Section 2 provides background on GANs and cGANs, explaining their
structure and usage in data generation tasks.

Section 3 covers the experiments and results, including a description
of the dataset, environmental setup, experimental design, and detailed
results of the experiments.

Section 4 concludes the paper, summarizing key findings and proposing
future research directions.

1. Related works

The paper by Nguyen et al. [6] explores the use of GANs for image-
based malware classification. The study compares the performance of GANs
with various other machine learning models, such as support vector
machines (SVM) and random forest (RF). They focus on using the GAN
model to classify different malware families and evaluate its efficacy for
adversarial attacks.

The results show that GANs are effective at generating realistic
images for classification but are less useful for adversarial attacks, as the
generated images are easily distinguishable from real ones. The paper
also highlights the strengths of auxiliary-classifier GANs (AC-GANs)
in achieving competitive classification results when compared with other
machine learning techniques.
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Li et al. [7] introduce GMADV, a framework for Android malware
classification and adversarial training, addressing challenges posed by
anti-reverse engineering techniques and limited malware sample diversity.
GMADV converts APK files into RGB Markov images and utilizes a VGG13
model for feature extraction and classification. Additionally, a GMM-GAN
is employed to increase malware variant diversity by blending content and
style features.

Experimental results show significant improvements in classification
performance, with F1-scores exceeding 95%, demonstrating the framework’s
effectiveness in generating diverse malware variants and enhancing
adversarial training.

Reilly et al. [5] explore the use of deep learning, specifically GANs, to
enhance the robustness of image-based malware classification models
against adversarial attacks. The study evaluates two image conversion
techniques — byteplot and space-filling curves — using a ResNet-50 model
to classify malware samples.

The results show that models trained with GAN-generated data exhibit
significantly better resistance to adversarial attacks compared to those
trained without GANs. The paper underscores how adversarial training,
particularly with GANs, improves classification performance and robustness
in malware detection tasks, highlighting the potential of GANs to bolster
the security and accuracy of such systems despite certain limitations.

The provided papers present several limitations in the use of GANs for
malware detection and classification. In the GMADV framework, while
diverse malware variants are generated, the method still produces samples
with similarities to the originals, limiting the creation of entirely novel
behaviors, and the GMM-GAN may struggle with scalability for larger
datasets.

The image-based malware classification model trained with GANs, as
discussed by Li et al. [7], shows improved robustness against adversarial
attacks but is limited to image-based transformations, leaving potential
gaps in detecting more dynamic malware types, and the results are specific
to the ResNet-50 model. Nguyen et al.’s work [6] also faces challenges,
particularly with the computational expense and instability of GANs
during training on large datasets, and the generated samples, while useful
for classification, are less effective in adversarial settings where real and
synthetic data are more easily distinguished.
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Figure 1. General structure of GANs

These studies highlight the constraints of GAN-based approaches
in scaling, sample diversity, and generalization across various malware
types.

2. Background

2.1. Generative Adversarial Networks

First introduced by Ian Goodfellow and colleagues in 2014, GANs
have swiftly evolved into a pivotal technique within machine learning and
artificial intelligence [8]. Originally created for image generation tasks,
GANs feature two neural networks in competition: a generator, which
produces data resembling real-world examples, and a discriminator, which
works to differentiate between real and generated data. This adversarial
dynamic pushes both networks to improve iteratively.

The overall structure of GANs is depicted in Figure 1. Since their
inception, GANs have been applied to a wide range of areas, such as data
augmentation, artistic generation, and more recently, in cybersecurity for
generating synthetic datasets that strengthen machine learning models
against threats like malware. Despite their versatility, training GANs can
be difficult, with issues like mode collapse and high computational demands
being common challenges [9]. Nevertheless, their ability to generate highly
realistic synthetic data marks GANs as a transformative tool in modern
machine learning.
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Figure 2. The architecture of cGAN [11]

2.2. Conditional Generative Adversarial Networks

CGANs represent a refined architecture of the standard Generative
Adversarial Network, designed to generate synthetic data closely aligned with
conditioned constraints. This architecture incorporates both a generator
and a discriminator, functioning through an adversarial process to improve
the realism and specificity of generated outputs [10,11].

The interaction between G and D is depicted in Figure 2. Here, the
generator aims to fool the discriminator by creating data indistinguishable
from real data, while the discriminator learns to better differentiate real
data from forgeries. This adversarial training not only enhances the
generator’s ability to mimic real data but also sharpens the discriminator’s
analytical skills.

The generator, denoted by G, takes as input a noise vector Z, typically
sampled from a standard normal distribution, along with conditional labels
Y . These labels ensure that the generated data, G(X,Z), conforms to
specific attributes required by the application, such as class characteristics
in classification tasks. This approach allows the generator to produce not
only realistic but also conditionally relevant data.

Simultaneously, the discriminator, D, evaluates the authenticity of both
the data produced by G and the actual data samples from the training
set. Each set of data, real or synthetic, is presented to D along with its
corresponding labels Y , which helps D make more informed judgments.



Robust malware detection via cGAN-based data augmentation 103

Table 1. Original CICMalDroid2020 dataset size with categories

Category Count
Adware 1,253
Banking 2,100
SMS malware 3,904
Riskware 2,546
Benign 1,795

The discriminator’s task is to distinguish between ’real’ and ’fake’ data,
effectively identifying the synthetic outputs of the generator.

CGANs are particularly valuable for applications requiring data
augmentation in imbalanced datasets, significantly contributing to the
diversity and volume of training data. This makes them ideal for
improving model performance and robustness in various domains, including
cybersecurity and healthcare.

3. Experiments and results

3.1. Dataset description

The experiments in this study utilize the CICMalDroid2020 dataset
[12,13], which contains a balanced distribution of benign and malware
samples. Distribution of file categories in this dataset has been shown in
Table 1. However, to simulate a more challenging, imbalanced scenario that
is common in real-world malware detection, we intentionally reduced the
number of malware samples to 10% of their original count, ensuring that
the percentage distribution of different malware categories was maintained
to preserve sample diversity. This resulted in 980 malware samples and
1,795 benign samples. Using cGAN, we generated additional synthetic
malware samples to increase the total malware count to 1,795, thereby
balancing the dataset while preserving the diversity of malware categories
for improved detection performance.

3.2. Experimental design

In this study, the cGAN was employed to address class imbalance by
generating synthetic malware samples. The cGAN architecture used for
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malware data augmentation is outlined in Algorithm 1. This algorithm
consists of several key steps, which involve training both the generator and
discriminator in a competitive setting.

Algorithm 1. cGAN for Malware Data Augmentation

1: Input: Real dataset Xreal with class labels yreal, latent space dimension
z, total number of epochs epochs, batch size m

2: Output: Trained generator G, trained discriminator D, generated
synthetic malware samples Xfake

3: Initialize generator G and discriminator D with random weights
4: Set optimizer and hyperparameters
5: for each epoch t from 1 to epochs do
6: Step 1: Train the Discriminator D:
7: Sample a batch of real data Xreal and labels yreal
8: Sample a batch of random noise vectors z and malware labels yfake
9: Generate synthetic samples Xfake = G(z, yfake)

10: Compute discriminator loss:

Lreal = D(Xreal, yreal), Lfake = D(Xfake, yfake)

11: Update D by minimizing combined loss:

LD =
1

2
(Lreal + Lfake)

12: Step 2: Train the Generator G:
13: Sample new batch of random noise vectors z and malware labels

yfake
14: Generate synthetic samples Xfake = G(z, yfake)
15: Compute generator loss:

LG = D(G(z, yfake), yfake)

16: Update G by maximizing LG

17: end for
18: Step 3: Generate new malware samples:
19: Sample random noise z and malware labels yfake = 1
20: Generate synthetic malware samples Xsynthetic = G(z, yfake)
21: Combine Xsynthetic with the original dataset

The process begins by initializing the generator G and the discriminator
D with random weights. In each epoch, the discriminator is trained first by
sampling batches of real data, along with the corresponding class labels,
and comparing them with synthetic data generated by the generator.
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The discriminator’s loss is calculated based on its ability to distinguish
between real and fake samples, and the model is updated by minimizing
the combined loss from both real and synthetic data, as outlined in Step 1
of Algorithm 1.

Following this, the generator is trained to improve the realism of the
synthetic data. It does this by generating new samples from random noise
vectors, conditioned on malware labels, and receiving feedback from the
discriminator. The generator’s loss is calculated based on how well it can
"fool" the discriminator into classifying synthetic data as real, and it is
updated by maximizing its loss function, as described in Step 2.

The final step, Step 3 of Algorithm 1, involves generating new synthetic
malware samples by sampling random noise and malware labels. These
newly generated samples are combined with the original dataset to balance
the distribution of benign and malware samples.

The iterative adversarial process between the generator and discrimi-
nator allows the model to refine the quality of the synthetic malware
samples over multiple epochs, ultimately creating a balanced dataset that
enhances the performance of the machine learning models trained on it.
This approach effectively addresses the issue of class imbalance in malware
detection tasks, enabling models to better detect minority class malware
instances.

3.3. Enviromental setup

The experiments in this study were conducted on the Kaggle platform,
leveraging its computational resources for efficient model training and
evaluation. Various configurations were used, including CPU (4 cores, 30
GB RAM) for data processing, and GPU (Nvidia Tesla P100 or T4) with
up to 2 GPUs, 4 CPU cores, and 29 GB RAM for deep learning tasks. The
TPU 1VM setup, with 96 CPU cores and 330 GB RAM, provided the
highest computational power, ensuring efficient handling of large-scale deep
learning workloads and producing reliable results.

3.4. Results and discussions

The initial experiments conducted on the imbalanced dataset and
the subsequent trials on the augmented dataset using LightGBM and
other machine learning models yielded significant insights, presented
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Table 2. Comparison of the models on the imbalanced dataset

Model Accuracy Precision Recall F1-Score
LightGBM 0.9153 0.8958 0.8643 0.8798
Random Forest 0.9189 0.9096 0.8593 0.8837
KNN 0.8559 0.8083 0.7839 0.7959
Logistic Regression 0.7532 0.7460 0.4724 0.5785

Table 3. Comparison of the models on the augmented dataset

Model Accuracy Precision Recall F1-Score
LightGBM 0.9568 0.9619 0.9541 0.9579
Random Forest 0.9513 0.9666 0.9378 0.9520
KNN 0.8955 0.9041 0.8919 0.8980
Logistic Regression 0.8078 0.8816 0.7243 0.7953

Table 4. Confusion matrix for the imbalanced dataset using LightGBM

Predicted
Negative Positive

Actual
Negative 335 21
Positive 16 183

Table 5. Confusion matrix for the augmented dataset using LightGBM

Predicted
Negative Positive

Actual
Negative 335 13
Positive 16 354

in Table 2 and Table 3. Corresponding confusion matrices for LightGBM’s
performance on both datasets are detailed in Table 4 and Table 5.

In the comparative analysis of machine learning models trained on both
imbalanced and augmented datasets, LightGBM consistently emerged as
the standout performer. Initially, on the imbalanced dataset, LightGBM
demonstrated a strong capability with an accuracy of 91.53%, precision
of 89.58%, and an F1-score of 87.98%. This performance indicates a robust
ability to handle class imbalances effectively, particularly in identifying the
minority class malware samples.
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Upon augmenting the dataset to mitigate class imbalance, LightGBM’s
performance further excelled, leading to even higher metrics with an
accuracy of 95.68%, precision of 96.19%, and an outstanding F1-score
of 95.79%. The most notable improvement was observed in its recall, which
reached 95.41%, underscoring the model’s enhanced ability to correctly
identify almost all malware samples in the augmented dataset.

4. Conclusions and future works

In this study, we utilized cGAN to address the challenge of class
imbalance in malware detection. By intentionally reducing the number
of malware samples to 10% of their original count, we simulated a real-world
imbalanced scenario. Using cGAN, we augmented the minority class and
balanced the dataset.

The results showed that after balancing the dataset, the LightGBM
model achieved a high accuracy of 95.68%, with improvements in precision
(96.19%), recall (95.41%), and F1-score (95.79%). These metrics indicate
that LightGBM is highly effective when paired with cGAN-generated
synthetic data, outperforming other models in terms of detecting underrep-
resented malware samples. This demonstrates the strength of LightGBM
in handling large-scale, imbalanced datasets when supplemented with
generative techniques like cGAN.

There are several key directions for future research based on the
results of this study. First, optimizing the models with more advanced
data augmentation techniques, such as Variational Autoencoders (VAEs)
or Generative Pretrained Transformers (GPT), could further enhance
the detection of complex malware patterns. Additionally, implementing
these augmented models in real-time malware detection systems would
provide valuable insights into their performance in dynamic and evolving
environments.

Another important area is cross-dataset validation, where the models
could be tested across different malware datasets to assess their gen-
eralizability and robustness in varied attack scenarios. Furthermore,
investigating hybrid approaches, such as combining multiple machine
learning models or ensemble methods, could further improve detection
accuracy while reducing false positives and negatives.
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Finally, it is essential to evaluate the resilience of these models against
adversarial attacks, ensuring that the augmented data not only improves
detection rates but also enhances the security and reliability of the entire
detection system. Addressing these areas will contribute to the advancement
of more robust and effective malware detection frameworks.
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Аннотация. Обнаружение вредоносного ПО является важным аспектом ки-
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