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Introduction

This article is a continuation of a series of publi-
cations devoted to robust machine learning models [1, 
2]. It was prepared as part of the project of the Depart-
ment of Information Security of the Faculty of Com-
puter Science of Moscow State University named after 
M.V. Lomonosov on the creation and development of 
the master’s program “Artificial Intelligence in Cyber-
security” [3].

The special impact on the elements of the pipe-
line of machine learning systems is called attacks on 
machine learning systems. Among such influences, the 
so-called adversarial attacks stand out. This is a spe-
cial change in the input data, designed to change the 
operation of the machine learning system (“cheat” the 
system) or to achieve its desired behavior.

Adversarial attacks rely on the complexity of 
deep neural networks and their statistical nature to find 
ways to exploit them and change their behavior. There 
is no way to detect malicious activity with the classic 
tools used to protect software from cyber threats. Ad-
versarial attacks manipulate the behavior of machine 
learning models. Most of the examples relate to work-
ing with images, but in reality, there are examples of 
attacks on text analysis systems, audio data classifica-
tion (speech recognition), and time series analysis. In 
general, they can be considered as some universal risk 

for machine learning (deep learning) models [2]. There 
are various attempts to explain the nature of their ex-
istence. According to one hypothesis, adversarial at-
tacks exist due to the non-linear nature of the systems, 
which leads to the existence of some data areas not 
covered by the generalization algorithm. According to 
others, it is, on the contrary, retraining of the system, 
when even small deviations from the training data set 
are processed incorrectly.

The term adversarial attack is often used loosely 
to refer to various types of malicious actions against 
machine learning models. And the term adversarial ex-
ample describes the data used in an adversarial attack. 
The formal definition of a threat model for a classifica-
tion problem (it is a typical use case for so-called crit-
ical applications) could be described via the following 
set of statements. Suppose we have an initial data set 
X and a finite set of class labels Y, it is necessary to 
find a mapping f: X → Y. This mapping f is vulnerable 
to adversarial attacks when there is a mapping A such 
that for any x ∈ X there exists )(~ xAx =  for which 

yxf ≠)~( , given that f(x) = y.
The construction of adversarial examples, clas-

sically, is the search for minimal perturbations of the 
correct input data, which change the operation of the 
classifier. In this case, the search for such perturbations 
is performed purely formally (L-norms for images). In 
the article, we consider the issues of meaningful gen-
eration of test cases for machine learning systems in 
the form of so-called counterfactual examples. There 

On the Practical Generation of Counterfactual Examples*

D.E. Namiot, E.A. Ilyushin, I.V.Chizov

Lomonosov Moscow State University, Moscow, Russia

Abstract. One of the important elements in evaluating the stability of machine learning systems are the 

so-called adversarial examples. These are specially selected or artificially created input data for machine 

learning systems that interfere with their normal operation, are interpreted or processed incorrectly. Most 

often, such data are obtained through some formal modifications of the real source data. This article 

considers a different approach to creating such data, which takes into account the semantic significance 

(meaning) of the modified data - counterfactual examples. The purpose of the work is to present practical 

solutions for generating counterfeit examples. The consideration is based on the real use of counterfac-

tual examples in assessing the robustness of machine learning systems.

Keywords: machine learning, adversarial examples, counterfactual examples.

DOI: 10.14357/20790279230109

* This research has been supported by the Interdisciplinary Scientific 
and Educational School of Moscow University “Brain, Cognitive Sys-
tems, Artificial Intelligence”.



74 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных D.E. Namiot, E.A. Ilyushin, I.V.Chizov

are already a fairly large number of publications on 
this topic, but not all of the proposed approaches are 
really useful or even just applicable. The purpose of 
this work is to present exactly the approaches actually 
used in practice.

Common to all machine learning systems is, ob-
viously, only the presence of a pipeline with standard 
stages: data selection (selection), model training, and 
testing (practical use) of the trained model. At each 
stage, developers have a sufficient selection of ready-
made tools. On the one hand, this is undoubtedly a big 
plus. And technically, it’s hard to imagine that there 
will be a single model, a single data cleansing tool, 
and so on. But, on the other hand, the practice of IT 
(and machine learning systems are, of course, IT sys-
tems) suggests that it is necessary to reuse models, 
architectures, etc. For economic success, IT projects 
cannot always be unique and must reuse some solu-
tions (components of other solutions). For machine 
learning systems, an example of such reuse is AutoML 
solutions [36], where solutions are selected (fixed) for 
all individual elements of the machine learning pipe-
line. It is the requirements of reuse (in fact, these are 
economic requirements - the need for rapid imple-
mentation) that make it important to develop practi-
cal recommendations for reusable implementations of 
individual elements of the pipeline. And first of all, it 
is some standard (de facto standard) architectural solu-
tions that are important. For many positions, we have 
many implementations that differ in quite specific as-
pects, and the question of choosing a specific imple-
mentation is not the most important one. Much more 
important is the overall solution architecture. 

In this paper, we consider one of the elements of 
the machine learning pipeline - testing machine learn-
ing systems. Such testing is obviously different from 
traditional software testing. First of all, because the 
nature of the results of a machine learning system is 
probabilistic in nature, the basis for the results (con-
clusions) often cannot be not only verified, but simply 
obtained. The contribution of this article is architectur-
al solutions for the so-called adversarial testing, that 
is, the search for data examples that cause machine 
learning systems to work incorrectly. In addition to 
justifying the architecture itself, we provide examples 
of the use of specific software products. It should be 
noted that, as examples, they illustrate the proposed 
approach, but, of course, are not exclusive. 

More generally, the task we are solving is to 
build a trusted environment for the development 
of artificial intelligence systems [37]. Such envi-
ronments, in the end, are sets of products (software 
systems) that affect different aspects of the machine 
learning pipeline, designed to increase confidence in 

the results of the developed machine learning models. 
These products include, for example, tools for adver-
sarial attacks [38], formal verification of machine 
learning models [1], data cleansing, and so on. Nat-
urally, testing and adversarial testing are necessarily 
part of such an environment. To avoid being tied to 
specific vendors, and to enable the development of 
critical applications, we consider only systems with 
open source, which can be modified if necessary. The 
article discusses the choice of products for testing 
machine learning systems.

The remainder of the article is structured as fol-
lows. Section II describes the actual approach to using 
counterfactuals. Section III focuses on the use of coun-
terfactuals in machine learning. Section IV compares 
counterfactual and adversarial examples. Section V 
contains direct guidance on practical application.

1. On counterfactual examples

The use of counterfactuals has become a hot and 
popular topic in the machine learning community for 
many reasons such as explainability, interpretability, 
checking algorithmic fairness, etc. The general idea is 
clear enough. If we have a known output of the mod-
el, that is, for a given input, we know the output (the 
result of work) of the model, then we will be interest-
ed in the change in this output (result) when the input 
changes. Under what input data (what changes in input 
data) will the output change? 

So, there are several models (and definitions) for 
the counterfactuals. For example, in the classification 
task, an example counterfactual explanation provides 
the following information: “for an example that be-
longs to class A, what changes do we need to make 
to the input so that the output will be classified as B”. 
As per another definition, if we consider A and B to 
represent events or facts and A precedes B in time in 
the statement “A and B is true”, then the counterfac-
tual statement is ‘If A had not occurred, B would not 
have occurred’. So, a counterfactual analysis can help 
to find whether A is a cause of B (it is by supposing the 
non-occurrence of A and seeking for the effect of this 
assumption on B. 

In NLP a counterfactual example is defined as 
synthetically generated text which is treated different-
ly by a condition model. For example, given the text 
“This program is written in Python”, the counterfac-
tual text becomes “This program is written in Java”. 
If we know how the original sentence was classified, 
then how the counterfactuals will be classified? 

In fact, we are talking about the conclusion that a 
small change in the data changes the output (result) of 
the work. This obviously coincides with the definition 
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of the robustness of a machine learning model. Adver-
sarial examples, in particular, are looking for precisely 
the minimum possible changes in the initial data that 
change the operation of the model. Accordingly, at 
least in theory, counterfactuals can be used to test the 
robustness of a machine learning model as well as for 
studying (checking) the fairness and transparency of 
algorithms. Counterfactual examples as tests should 
be more understandable (interpretable) as we tie them 
to some real conclusion. These examples will be creat-
ed based on the interpretation (explanation) of the real 
conclusion (the result of the model).

In order to discuss counterfactuals, we have to 
turn to causality. The ability to understand causal rela-
tionships and to reason from them is one of the main 
human abilities [4].  Understanding physical causal 
relationships are fundamental to using any tool [5]. 
For example, people to people management (rela-
tions) is based on the understanding of psychological 
causal relationships. In many works, it is noted that 
it is convenient for human psychology to explain any 
conclusions by means of contrasting rather than direct 
explanations. We can explain, for example, a certain 
classification by giving reasons why only a certain 
class is chosen and why others are rejected. In oth-
er words, the explanation can be based on the choice 
and rejection of specific alternatives (results). This 
“discriminatory” explanation is counterfactual. For 
a machine learning system, counterfactual examples 
are input data that changes the result (classification, 
solution). The academic literature notes that this ap-
proach is more in line with emerging regulatory con-
straints, such as the General Data Protection Regula-
tion (GDPR) [20]. The counterfactual approach helps 
to establish three important characteristics of the inter-
pretability of models: 
•  determine how the interpretation of the model was 

made,
•  provides opportunities for correcting unfavorable 

decisions 
•  provides hints for obtaining expected results in 

forecasting
As it is stated in [4], causal understanding thus 

maintains the kinds of cognition that have been pro-
posed as part of the distinctively human cognitive 
toolbox. And in both the physical and psychological 
domains, causal knowledge is linked with sophisticat-
ed inferences about the counterfactual past.  There are 
two distinctive features of causal knowledge, which 
are captured by causal models [4]:
1)  causal knowledge supports a distinctive set of in-

ferences involving interventions and counterfactu-
als. So, causal knowledge supports counterfactual 
claims;

2)  causal knowledge involves not only specific rela-
tions between particular causes and effects but co-
herent networks of causal relations. 

And one of the main statements from [4]: “coun-
terfactual and intervention reasoning, and Bayesian 
learning all involve the same cognitive machinery: 
the ability to consider events that have not occurred”. 
This is, in fact, a direct reference to the basic idea of 
machine learning. We train the network on a training 
dataset with the idea that a generalization will be built 
that will work correctly on the rest of the data, which, 
generally speaking, are unknown to us. We want to 
generalize the learning outcomes for the entire general 
population. That is, train the network to process data 
(events) that do not yet exist.

2. The usage of counterfactuals  
in machine learning 

Counterfactual explanations are gaining attention 
as a way to explain the decisions of a machine learning 
model. There are several technical ways to generate 
and evaluate counterfactuals, such as feature-based 
explanations, prototype explanations, example-based 
explanations, or causal explanations [6].

We define a feature-highlighting explanation as 
an explanation that points to specific features in the 
model that matter to the individual decision. Of course, 
each type of feature-highlighting explanation may de-
fine this “matter” differently. There are two types of 
feature-highlighting explanations: counterfactual ex-
planations and principal reason explanations. Princi-
pal reason explanation is defined in [8] as the reasons 
defined by law. Or more broadly, we could describe 
them as reasons based on some predefined set (some 
vocabulary).

The goal of counterfactual explanations is to ex-
plain how things could have been different, as well as 
provide a set of features changes for reaching a dif-
ferent output of the model in the future. Counterfac-
tual explanations are generated by identifying such 
features that, if minimally changed, would alter the 
output of the model.  For example, counterfactual ex-
planations are trying to find the “nearest” hypothetical 
point that is classified differently from the point cur-
rently in question [7]. 

In other words, identifying the set of features 
results in the desired prediction while remaining at a 
minimum distance from the original set of features de-
scribing the individual [7]. It is illustrated in Fig. 1.

Suppose we are going to present counterfactual 
explanations for classification models, which are func-
tions mapping input feature vectors x ∈ X into label 
c ∈ {C1, C2, … Cn}.  Actually, the most of research 
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papers in this area have applied counterfactual expla-
nations to classification tasks. Given a classification 
model [7]

f : X → { C1, C2, … Cn }, 

we can define the set of counterfactual explanations 
for a (factual) input x̂  ∈ X as CFf ( x̂ ) = {x ∈ X | f(x) ≠ 
f( x̂ )}. In other words, CFf ( x̂ ) contains all the inputs x 
for which the model f returns a classification different 
from f( x̂ ).

For prediction models, this is defined similarly, 
only the mapping will be carried out into the set {0, 1}

Based on the above-defined counterfactual space 
CFf ( x̂ ), we would like to produce counterfactual ex-
planations for the output of a model f on a given input 
by trying to find a nearest counterfactual, which is de-
fined as: x̂ * ∈ argmin d(x, x̂ ) for x ∈ CFf( x̂ )

Fig. 1. Architecture Overview for Model-Agnostic 
Counterfactual Explanations (MACE) [7]

Prototype-based counterfactual explanations 
are discussed in the paper [9].  Since we cannot in-
terpret the black box, our first task is to create an 
interpreted view for it. This is exactly what proto-
typing-based methods do. The work of the black 
box is being prototyped. As a first step, we need to 
find a representative dataset. The maximum mean 
discrepancy (a distance on the space of probability 
measures) is used to calculate the representativeness. 
After that prototype-based explanations provide the 
nearest prototype as explanations for a given test 
instance [10]. In some papers, a similar approach is 
called an example-based explanation: example-based 
approaches seek to find data points in the vicinity of 
the explainee data point. They either offer explana-
tions in the form of data points that have the same 
prediction as to the explainee data point or the data 
points whose prediction is different from the explain-
ee datapoint [11]. In other words, example-based ap-
proaches are another kind of explainability technique 
used to explain a particular outcome. 

In general, the explainability problem for ma-
chine learning systems can be presented as model 
explanation or outcome explanation problems. As per 
definition, a model explanation is about an interpreta-
ble and transparent explanation of the original model. 

As the developed techniques for neural networks 
explanations, we could mention decision trees [12, 13] 
and rule sets [14, 15]. As per software tools, there are 
some model-agnostic packages. For example - Partition 
Aware Local Model (PALM) [16]. PALM allows you to 
study the structure of model conclusions using its ap-
proximation by surrogate models. This is to some extent 
a general approach, also called partial modeling in the 
literature. In such a model, we are trying to approximate 
the general black box with “understandable” models. 
This, in particular, should help in debugging models. 
PALM approximates a neural network using a two-part 
surrogate model, which includes a meta-model that par-
titions the training data, and a set of sub-models that ap-
proximate the patterns (solutions) within each partition. 
The paper [17] describes an approximation algorithm, 
GoldenEye, to select sets of attributes that influence 
the work of the classifier. In fact, this is combinatorics, 
when the possible combinations are sorted out.

Outcome explanation needs to provide an expla-
nation for just a specific prediction from the model. 
This type of explanation does not affect the internal 
logic of the models, but only deals with inferences. 
There are model-specific approaches like Grad-CAM 
[18] and model agnostic approaches like LIME [19] 
have been proposed. All of them are provided either 
feature attribution or model simplification methods.

3. Counterfactual and adversarial examples

In general, the performance (the predictive of 
classification performance) for any machine learning 
model is based on the assumption of a statistical sim-
ilarity of the distributions of training and production 
(testing) data.

Note that in the general case, the general set of 
data is unknown to us. Accordingly, it is unknown not 
only how the training and test data correlate with each 
other, but also how the test and training data separately 
correlate with the general population.

In the classic example [22], we have (an actually 
unknown) some sine curve, the test and training data 
for which just happened to be on different crests (Fig. 
2). Both the training and test data are perfectly (very 
accurately) approximated by some straight line, but 
these are completely different straight lines (different 
angles of inclination).

And in the general case, we cannot assume sim-
ilar distributions. The only way to somehow guaran-
tee this, obviously, involves exhaustive knowledge of 
the population. In some tasks, this is really possible, 
but this is usually the point that is not discussed in the 
works on machine learning, although, of course, it de-
serves separate consideration.
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Since, in fact, when creating a model, we only 
know the training data and, accordingly, their statisti-
cal characteristics, studying the operation of the model 
on data whose distribution differs from the distribu-
tion of the training data looks like a natural process. 
As noted in [23], evaluation of out-of-distribution data 
is a common practice in NLP and image proceedings.

Fig. 2. Training and test samples [22]
 And the reason for this is the different distributions 
of test and training data (Fig.3).

Fig. 3. Distribution shift [22]

One fact may be noted here. Model errors (poor 
generalization) are often associated precisely with 
what is called network overtraining [24]. This happens 
when the models rely on some training dataset-specific 
biases and artifacts rather than intrinsic properties of 
the data. When these biases do not exist in the pro-
duction data, the performance of the models can drop 
dramatically. The keywords here are “intrinsic prop-
erties”. And the way to identify them is just counter-
factual examples. We change the data, the solution of 
the system is reversed, which allows us to assume that 
the changed (deleted) data are the main characteristics 

based on which the machine learning model makes a 
decision.

In ideology, this is similar to competitive ex-
amples, but their search is carried out not through a 
sequential selection of modifications that change the 
solution, but by one-time changes that change the 
“meaning” of the image. The emphasis is on pairs: the 
image and its counterfactual example(s).

In this connection, we could cite works that dis-
cussed generalization from a causal perspective [25, 
26]. To provide generalization, the model must reflect 
the real causal mechanisms behind the data.

One practical example that can be mentioned 
(and actually used) in this situation. 

Fig.4. Attention areas [27]

Using the well-known approach for evaluating 
areas of the image that attract attention [27], one can 
try to build counterfactual examples by removing just 
these areas. In this work, this was illustrated by a ten-
nis player, where attention was drawn to the racket and 
the surface (Fig. 4). Strictly speaking, it was on these 
parts of the image that a person evaluated the image. 
In our case, this was used on a traffic sign recognition 
system (Fig. 5), and images (Fig. 6)

The counterfactual examples constructed in this 
way were used for adversarial training and increasing 
robustness.
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Summarizing these results, we can say that coun-
terfactual examples are adversarial examples built with 
image semantics in mind. If we talk about the classical 
form of constructing adversarial examples, then we 
operate with pixels in the framework of L-norms, and 
not with image fragments. Of course, we should be 
talking about data in general here, but in practice, we 
are talking about images (as in the vast majority of 
works related to sustainable machine learning) and, as 
discussed in the next section, texts.

Note that the analysis of the content of images 
corresponds to the ideas outlined in the pioneering 
work [28], where the authors propose a new model for 
deep learning based precisely on enlarged fragments. 
The current state of research suggests that, within the 
framework of per-pixel processing, the robustness of 
machine learning systems cannot be ensured.

4. On practical examples

Which in the end can be used to prepare counter-
factual examples in practical applications?

A. Counterfactual examples for texts
Counterfactual examples for text represent the 

simplest and most clearly interpretable model. Several 

approaches to generating such examples are described 
in the literature, in a simple form they can be present-
ed:

If we have a sentence in the “Who did what” for-
mat, then building a counterfactual example is, in fact, 
a well-known exercise from foreign language text-
books - “make a new sentence that denies the original 
statement (“No one did it” format)

For example, such negation formats are given in 
[29] for the source text “I am very disappointed with 
the service”:

There is practically no difference between the 
approaches, since technically they do pretty much the 
same thing. As an example of software (a toolkit that 
can be used in your own projects), you can cite, for 
example, Checklist [30].

It is a system built on the basis of templates. Here 
is a typical example (source data https://github.com/
marcotcr/checklist)
import checklist
from checklist.editor import Editor
import numpy as np
editor = Editor()
ret = editor.template(‘{first_name} is {a:profession} 
from {country}.’,
profession=[‘lawyer’, ‘doctor’, ‘accountant’])
np.random.choice(ret.data, 3)
and here is the result:
[‘Mary is a doctor from Afghanistan.’,
‘Jordan is an accountant from Indonesia.’,
‘Kayla is a lawyer from Sierra Leone.’]

To generate the Checklist uses the set of pre-
defined templates, lexicons, generic perturbations, 
and context-sensitive sentences. The main limitation 
of these pattern-based or rule-based approaches is that 
they cannot generate meaningful diversity [29].

Token-based Substitution in Table 1 uses either 
single word replacements or some templates to generate 
multiple test cases. Adversarial examples, as usual, do not 
evaluate the text at all (do not appreciate the meaning).

Other approaches are used, for example, to gen-
erate text GPT-2, BERT, or bag-of-words models [31]. 
In general, we can characterize this direction as quite 
developed from a practical point of view, with ready-
to-use tools.

B. Counterfactual examples for images
Originally, Search for EviDence Counterfac-

tual (SEDC) is the model-agnostic search algorithm 

Fig.5. Road sign: original (left) and counterfactual 
(right)

Fig. 6. Images: original (left) and counterfactual 
(right)

Table 1
TEXT COUNTEFACTUALS

Input Sentence Token-based 
Substitution

Adversarial attack
Controlled

Counterfactual Generation
I am very pleased with the service.
I am very happy with the service.

I am very impressed with the service.
I am very witty with the service.

I am very happy with this service.
I am very pleased with the service.
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(SEDC) to find counterfactual explanations for doc-
ument classifications. According to this algorithm, the 
explanation can be considered as an irreducible set 
of characteristics (for example, for text documents –  
words), which, in their absence, would change the 
classification of the document.

The modification presented in [32] as a set of 
characteristics uses segments into which the original 
image is divided. As noted above, for images, again, 
not pixel processing is used, but manipulations with 
significant elements of the image. Accordingly, the 
explanation for an image is an irreducible number of 
segments, the removal of which will change the classi-
fication of the image.

As per [32], consider an image I assigned to class 
c by a classifier C the objective is to find a counterfac-
tual explanation E as an irreducible set of segments 
that leads to another classification after removal. For-
mally:
E ⊆ I (segments in image) 
C(I \ E) ≠ c (class change) 
∀ E’ ⊂ E : C(I \ E’ ) = c (irreducible) 

The counterfactual explanation, in this case, is 
the classification of the image that is obtained after re-
moving the segments.

The original work thus defined the “minimal” 
image, which was still classified as an “airplane” (fu-
selage without wings). Approaches similar to this have 
been illustrated above.

In [33], with the telling title “Explanations based 
on the missing”, this is described as pertinent positive 
(PP) and pertinent negative (PN). The PP is a factor 
that is minimally required for the justification of the 
final decision and the PN is a factor whose absence is 
minimally required for justifying the decision.

The basic implementation of SEDC is represent-
ed by the resource [34]. In the basic case, the image is 
segmented, and then the segments are removed one by 
one until the classification of the remaining “image” 
changes. In a modified version of SEDC-T [32], seg-
ments are also removed one at a time, until the clas-
sification reaches the specified value. In other words, 
SEDC-T gives a more detailed explanation of why the 
image is not predicted as the correct class (removing 
which segments leads to a given misclassification).

As for the actual segmentation of images, many 
approaches can be used here, in addition to the atten-
tion map presented above. In fact, you can use a sim-
ple grid to divide the image into segments or use more 
complex approaches that are widely presented in open 
implementations [35]. The obvious advantages of se-
mantic segmentation are the possible explainability of 
the results and the ability to use the results for physical 
attacks (for example, to hide part of the image with a 

patch). We also note that semantic image segmentation 
is also present in popular packages for machine learn-
ing, such as Keras and Tensorflow [39].

C. Counterfactual examples for sounds
Counterfactual examples for sound classification 

present a more exotic challenge. In practice, we can 
only give an example from [21]. Here, the validity of 
automatic speech recognition (ASR) models was stud-
ied. The same text was recorded in different voices (for 
different ethnic groups, different sexes, and ages). At the 
same time, the work of the recognition system should 
not be disturbed. The paper practically shows that the 
widely used automatic speech recognition systems are 
unfair, since some groups of users had a higher error 
rate than others. One way to define fairness in ASR is to 
require that changing any person’s demographic group 
(for example, changing their gender, age, education, or 
race) does not change the probability distribution be-
tween the possible speech-to-text transformations. In 
the counterfactual justice paradigm, all variables that 
do not depend on group membership (for example, the 
text read by the speaker) remain unchanged, while vari-
ables that depend on group membership (for example, 
the speaker’s voice) change counterfactually. Therefore, 
one can attempt to achieve a fair ASR performance by 
teaching the ASR to minimize the change in the proba-
bilities of recognition outcomes despite the counterfac-
tual change in human demographics.

Conclusion

In this article, we focused on generating adver-
sarial tests for machine learning systems. As we noted 
in previous works, testing machine learning systems is 
robustness testing.

Traditional methods, considered as an optimi-
zation problem of finding the smallest modifications 
that change the results of the classification, give, in 
the end, very limited results in terms of increasing 
stability. And, most importantly, the proposed modifi-
cations are completely artificial by their nature, in no 
way connected with possible attacks. In this regard, in 
this paper, we justified the use of counterfactual exam-
ples for generating tests, since they are related to the 
semantical analysis of data.

The purpose of this paper was to present practical 
reusable solutions for generating counterfactual exam-
ples for various types of input data. The result of our 
research, based on the practical use of various prod-
ucts, is the presentation of a pipeline for constructing 
counterfactual examples in image recognition and text 
classification problems.

Creating counterfactual examples for text clas-
sification is currently a purely technical task. The 
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question is only in choosing the most convenient soft-
ware implementations. The algorithms are quite trans-
parent and can be built into your own applications. 
We propose to use template-based systems, like the 
above-mentioned Checklist.

In terms of building counterfactual examples for 
images, the best choice, in our opinion, is the semantic 
segmentation of images. We propose to use the open 
source implementation of SEDC-T. Alternative meth-
ods to some extent reproduce approaches to construct-
ing adversarial examples and are based on a formal 
assessment of the change in the quality of the system 
when modifying images.

Counterfactual examples for sound classification 
(important, for example, for biometric identification 
systems) are the least developed area. To date, we 
cannot offer practical solutions in this direction. One 
reason for this is the nature of existing classification 
systems, which rely on various artificially created 
characteristics. For example, wavelet transforms, etc. 
With their use, the reverse transition to modifications 
of the original sound characteristics becomes unclear.

We are grateful to the staff of the Department of 
Information Security of the Faculty of Computational 
Mathematics and Cybernetics, Lomonosov Moscow 
State University for valuable discussions of this work.

 References

1.  Namiot, Dmitry, Eugene Ilyushin, and Ivan 
Chizhov. “On a formal verification of machine 
learning systems.” International Journal of Open 
Information Technologies 10.5 (2022): 30-34.

2.  Li, Huayu, and Dmitry Namiot. “A Survey of Ad-
versarial Attacks and Defenses for image data on 
Deep Learning.” International Journal of Open 
Information Technologies 10.5 (2022): 9-16.

3.  Artificial Intelligence in Cybersecurity. http://
master.cmc.msu.ru/?q=ru/node/3496 (in Rus-
sian) Retrieved: May, 2022

4.  Buchsbaum, Daphna, et al. “The power of possi-
bility: Causal learning, counterfactual reasoning, 
and pretend play.” Philosophical Transactions 
of the Royal Society B: Biological Sciences 
367.1599 (2012): 2202-2212.

5.  Sterelny, Kim. “Language, gesture, skill: the 
co-evolutionary foundations of language.” Phil-
osophical Transactions of the Royal Society B: 
Biological Sciences 367.1599 (2012): 2141-
2151.

6.  Kasirzadeh, Atoosa and Andrew Smart. “The use 
and misuse of counterfactuals in ethical machine 
learning.” Proceedings of the 2021 ACM Con-

ference on Fairness, Accountability, and Trans-
parency. 2021.

7.  Amir-Hossein Karimi, Gilles Barthe, Borja Belle, 
and Isabel Valera. 2019. Model-Agnostic Coun-
terfactual Explanations for Consequential Deci-
sions. arXiv preprint arXiv:1905.11190 (2019)

8.  Barocas, Solon, Andrew D. Selbst, and Man-
ish Raghavan. “The hidden assumptions be-
hind counterfactual explanations and principal 
reasons.” Proceedings of the 2020 Conference 
on Fairness, Accountability, and Transparency. 
2020.

9.  Duong, Tri Dung, Qian Li, and Guandong Xu. 
“Prototype-based Counterfactual Explanation 
for Causal Classification.” arXiv preprint arX-
iv:2105.00703 (2021).

10.  Yadav, Chhavi, and Kamalika Chaudhuri. “Be-
havior of k-NN as an Instance-Based Explana-
tion Method.” arXiv preprint arXiv:2109.06999 
(2021).

11.  Verma, Sahil, John Dickerson, and Keegan 
Hines. “Counterfactual explanations for ma-
chine learning: A review.” arXiv preprint arX-
iv:2010.10596 (2020).

12.  Thiagarajan, Jayaraman J., et al. “Treeview: 
Peeking into deep neural networks via fea-
ture-space partitioning.” arXiv preprint arX-
iv:1611.07429 (2016).

13.  Boz, Olcay. “Extracting decision trees from 
trained neural networks.” Proceedings of the 
eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 
2002.

14.  Santos, Raul T., Júlio C. Nievola, and Alex A. 
Freitas. “Extracting comprehensible rules from 
neural networks via genetic algorithms.” 2000 
IEEE Symposium on Combinations of Evo-
lutionary Computation and Neural Networks. 
Proceedings of the First IEEE Symposium on 
Combinations of Evolutionary Computation 
and Neural Networks (Cat. No. 00. IEEE, 2000.

15.  Andrews, Robert, Joachim Diederich, and Alan 
B. Tickle. “Survey and critique of techniques 
for extracting rules from trained artificial neu-
ral networks.” Knowledge-based systems 8.6 
(1995): 373-389.

16.  Krishnan, Sanjay, and Eugene Wu. “Palm: Ma-
chine learning explanations for iterative debug-
ging.” Proceedings of the 2nd Workshop on 
Human-In-the-Loop Data Analytics. 2017.

17.  Henelius, Andreas, et al. “A peek into the 
black box: exploring classifiers by randomiza-
tion.” Data mining and knowledge discovery 5 
(2014): 1503-1529.



81Труды ИСА РАН. Том 73. 1/2023

On the Practical Generation of Counterfactual Examples

18.  Selvaraju, Ramprasaath R., et al. “Grad-cam: Vi-
sual explanations from deep networks via gradi-
ent-based localization.” Proceedings of the IEEE 
international conference on computer vision. 2017.

19.  Ribeiro, Marco Tulio, Sameer Singh, and Car-
los Guestrin. “Model-agnostic interpretabili-
ty of machine learning.” arXiv preprint arX-
iv:1606.05386 (2016).

20.  Gohel, Prashant, Priyanka Singh, and Man-
oranjan Mohanty. “Explainable AI: current sta-
tus and future directions.” arXiv preprint arX-
iv:2107.07045 (2021).

21.  Sari, Leda, Mark Hasegawa-Johnson, and Chang 
D. Yoo. “Counterfactually Fair Automatic Speech 
Recognition.” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing (2021).

22.  Francisco Herrera Dataset Shift in Classi-
fication: Approaches and Problems http://
iwann.ugr.es/2011/pdf/InvitedTalk-FHerre-
ra-IWANN11.pdf  Retrieved: Sep, 2021

23.  Teney, Damien, Ehsan Abbasnedjad, and An-
ton van den Hengel. “Learning what makes a 
difference from counterfactual examples and 
gradient supervision.” Computer Vision–ECCV 
2020: 16th European Conference, Glasgow, 
UK, August 23–28, 2020, Proceedings, Part X 
16. Springer International Publishing, 2020.

24.  Roelofs, Rebecca, et al. “A meta-analysis of 
overfitting in machine learning.” Proceedings 
of the 33rd International Conference on Neural 
Information Processing Systems. 2019.

25.  Heinze-Deml, Christina, and Nicolai Mein-
shausen. “Conditional variance penalties and 
domain shift robustness.” arXiv preprint arX-
iv:1710.11469 (2017).

26.  Meinshausen, Nicolai. “Causality from a distri-
butional robustness point of view.” 2018 IEEE 
Data Science Workshop (DSW). IEEE, 2018.

27.  Das, Abhishek, et al. “Human attention in visu-
al question answering: Do humans and deep net-
works look at the same regions?.” Computer Vision 
and Image Understanding 163 (2017): 90-100.

28.  Bengio, Yoshua, Yann Lecun, and Geoffrey Hin-
ton. “Deep learning for AI.” Communications 
of the ACM 64.7 (2021): 58-65.

29.  Madaan, Nishtha, et al. “Generate your coun-
terfactuals: Towards controlled counterfac-
tual generation for text.” arXiv preprint arX-
iv:2012.04698 (2020).

30.  Ribeiro, M.T., Wu, T., Guestrin, C. and Singh, 
S. 2020. Beyond Accuracy: Behavioral Testing 
of NLP Models with CheckList. arXiv preprint 
arXiv:2005.04118 .

31.  Dathathri, Sumanth, et al. “Plug and play 
language models: A simple approach to con-
trolled text generation.” arXiv preprint arX-
iv:1912.02164 (2019).

32.  Vermeire, Tom, and David Martens. “Explainable 
image classification with evidence counterfactu-
al.” arXiv preprint arXiv:2004.07511 (2020).

33.  Dhurandhar, Amit, et al. “Explanations based on 
the missing: Towards contrastive explanations 
with pertinent negatives.” arXiv preprint arX-
iv:1802.07623 (2018).

34.  SEDC implementation https://github.com/yra-
mon/edc  Retrieved: May, 2022

35.  Van der Walt, Stefan, et al. “scikit-image: image 
processing in Python.” PeerJ 2 (2014): e453.

36.  He, Xin, Kaiyong Zhao, and Xiaowen Chu. “Au-
toML: A survey of the state-of-the-art.” Knowl-
edge-Based Systems 212 (2021): 106622.

37.  Namiot, Dmitry, Eugene Ilyushin, and Oleg Pili-
penko. “On Trusted AI Platforms.” International 
Journal of Open Information Technologies 10.7 
(2022): 119-127. (in Russian)

38.  Ilyushin, Eugene, Dmitry Namiot, and Ivan 
Chizhov. “Attacks on machine learning sys-
tems-common problems and methods.” Interna-
tional Journal of Open Information Technologies 
10.3 (2022): 17-22. (in Russian)

39.  Dadhich, Abhinav. Practical Computer Vision: 
Extract Insightful Information from Images Using 
TensorFlow, Keras, and OpenCV. Packt Publish-
ing Ltd, 2018.

D.E. Namiot. Dr. of Sci., Lomonosov Moscow State University, MSU, Faculty of Computational Mathematics and 
Cybernetics, Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory, dnamiot@gmail.com (сorrespondent author)
E.A. Ilyushin. MSU, Faculty of Computational Mathematics and Cybernetics, Russia, 119991, Moscow, GSP-1,  
1-52, Leninskiye Gory, john.ilyushin@gmail.com
I.V. Chizov. PhD, docent, Lomonosov Moscow State University; Federal Research Center “Computer Science 
and Control” of the Russian Academy of Sciences, MSU, Faculty of Computational Mathematics and Cybernetics, 
Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory, ichizhov@cs.msu.ru


