
73Труды ИСА РАН. Том 73. 1/2023

Introduction

This article is a continuation of a series of publi-
cations devoted to robust machine learning models [1,
2]. It was prepared as part of the project of the Depart-
ment of Information Security of the Faculty of Com-
puter Science of Moscow State University named after
M.V. Lomonosov on the creation and development of
the master’s program “Artificial Intelligence in Cyber-
security” [3].

The special impact on the elements of the pipe-
line of machine learning systems is called attacks on
machine learning systems. Among such influences, the
so-called adversarial attacks stand out. This is a spe-
cial change in the input data, designed to change the
operation of the machine learning system (“cheat” the
system) or to achieve its desired behavior.

Adversarial attacks rely on the complexity of
deep neural networks and their statistical nature to find
ways to exploit them and change their behavior. There
is no way to detect malicious activity with the classic
tools used to protect software from cyber threats. Ad-
versarial attacks manipulate the behavior of machine
learning models. Most of the examples relate to work-
ing with images, but in reality, there are examples of
attacks on text analysis systems, audio data classifica-
tion (speech recognition), and time series analysis. In
general, they can be considered as some universal risk

for machine learning (deep learning) models [2]. There
are various attempts to explain the nature of their ex-
istence. According to one hypothesis, adversarial at-
tacks exist due to the non-linear nature of the systems,
which leads to the existence of some data areas not
covered by the generalization algorithm. According to
others, it is, on the contrary, retraining of the system,
when even small deviations from the training data set
are processed incorrectly.

The term adversarial attack is often used loosely
to refer to various types of malicious actions against
machine learning models. And the term adversarial ex-
ample describes the data used in an adversarial attack.
The formal definition of a threat model for a classifica-
tion problem (it is a typical use case for so-called crit-
ical applications) could be described via the following
set of statements. Suppose we have an initial data set
X and a finite set of class labels Y, it is necessary to
find a mapping f: X → Y. This mapping f is vulnerable
to adversarial attacks when there is a mapping A such
that for any x ∈ X there exists)(~ xAx = for which

yxf ≠)~(, given that f(x) = y.
The construction of adversarial examples, clas-

sically, is the search for minimal perturbations of the
correct input data, which change the operation of the
classifier. In this case, the search for such perturbations
is performed purely formally (L-norms for images). In
the article, we consider the issues of meaningful gen-
eration of test cases for machine learning systems in
the form of so-called counterfactual examples. There

On the Practical Generation of Counterfactual Examples*

D.E. Namiot, E.A. Ilyushin, I.V.Chizov

Lomonosov Moscow State University, Moscow, Russia

Abstract. One of the important elements in evaluating the stability of machine learning systems are the

so-called adversarial examples. These are specially selected or artificially created input data for machine

learning systems that interfere with their normal operation, are interpreted or processed incorrectly. Most

often, such data are obtained through some formal modifications of the real source data. This article

considers a different approach to creating such data, which takes into account the semantic significance

(meaning) of the modified data - counterfactual examples. The purpose of the work is to present practical

solutions for generating counterfeit examples. The consideration is based on the real use of counterfac-

tual examples in assessing the robustness of machine learning systems.

Keywords: machine learning, adversarial examples, counterfactual examples.

DOI: 10.14357/20790279230109

* This research has been supported by the Interdisciplinary Scientific
and Educational School of Moscow University “Brain, Cognitive Sys-
tems, Artificial Intelligence”.

74 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных D.E. Namiot, E.A. Ilyushin, I.V.Chizov

are already a fairly large number of publications on
this topic, but not all of the proposed approaches are
really useful or even just applicable. The purpose of
this work is to present exactly the approaches actually
used in practice.

Common to all machine learning systems is, ob-
viously, only the presence of a pipeline with standard
stages: data selection (selection), model training, and
testing (practical use) of the trained model. At each
stage, developers have a sufficient selection of ready-
made tools. On the one hand, this is undoubtedly a big
plus. And technically, it’s hard to imagine that there
will be a single model, a single data cleansing tool,
and so on. But, on the other hand, the practice of IT
(and machine learning systems are, of course, IT sys-
tems) suggests that it is necessary to reuse models,
architectures, etc. For economic success, IT projects
cannot always be unique and must reuse some solu-
tions (components of other solutions). For machine
learning systems, an example of such reuse is AutoML
solutions [36], where solutions are selected (fixed) for
all individual elements of the machine learning pipe-
line. It is the requirements of reuse (in fact, these are
economic requirements - the need for rapid imple-
mentation) that make it important to develop practi-
cal recommendations for reusable implementations of
individual elements of the pipeline. And first of all, it
is some standard (de facto standard) architectural solu-
tions that are important. For many positions, we have
many implementations that differ in quite specific as-
pects, and the question of choosing a specific imple-
mentation is not the most important one. Much more
important is the overall solution architecture.

In this paper, we consider one of the elements of
the machine learning pipeline - testing machine learn-
ing systems. Such testing is obviously different from
traditional software testing. First of all, because the
nature of the results of a machine learning system is
probabilistic in nature, the basis for the results (con-
clusions) often cannot be not only verified, but simply
obtained. The contribution of this article is architectur-
al solutions for the so-called adversarial testing, that
is, the search for data examples that cause machine
learning systems to work incorrectly. In addition to
justifying the architecture itself, we provide examples
of the use of specific software products. It should be
noted that, as examples, they illustrate the proposed
approach, but, of course, are not exclusive.

More generally, the task we are solving is to
build a trusted environment for the development
of artificial intelligence systems [37]. Such envi-
ronments, in the end, are sets of products (software
systems) that affect different aspects of the machine
learning pipeline, designed to increase confidence in

the results of the developed machine learning models.
These products include, for example, tools for adver-
sarial attacks [38], formal verification of machine
learning models [1], data cleansing, and so on. Nat-
urally, testing and adversarial testing are necessarily
part of such an environment. To avoid being tied to
specific vendors, and to enable the development of
critical applications, we consider only systems with
open source, which can be modified if necessary. The
article discusses the choice of products for testing
machine learning systems.

The remainder of the article is structured as fol-
lows. Section II describes the actual approach to using
counterfactuals. Section III focuses on the use of coun-
terfactuals in machine learning. Section IV compares
counterfactual and adversarial examples. Section V
contains direct guidance on practical application.

1. On counterfactual examples

The use of counterfactuals has become a hot and
popular topic in the machine learning community for
many reasons such as explainability, interpretability,
checking algorithmic fairness, etc. The general idea is
clear enough. If we have a known output of the mod-
el, that is, for a given input, we know the output (the
result of work) of the model, then we will be interest-
ed in the change in this output (result) when the input
changes. Under what input data (what changes in input
data) will the output change?

So, there are several models (and definitions) for
the counterfactuals. For example, in the classification
task, an example counterfactual explanation provides
the following information: “for an example that be-
longs to class A, what changes do we need to make
to the input so that the output will be classified as B”.
As per another definition, if we consider A and B to
represent events or facts and A precedes B in time in
the statement “A and B is true”, then the counterfac-
tual statement is ‘If A had not occurred, B would not
have occurred’. So, a counterfactual analysis can help
to find whether A is a cause of B (it is by supposing the
non-occurrence of A and seeking for the effect of this
assumption on B.

In NLP a counterfactual example is defined as
synthetically generated text which is treated different-
ly by a condition model. For example, given the text
“This program is written in Python”, the counterfac-
tual text becomes “This program is written in Java”.
If we know how the original sentence was classified,
then how the counterfactuals will be classified?

In fact, we are talking about the conclusion that a
small change in the data changes the output (result) of
the work. This obviously coincides with the definition

75Труды ИСА РАН. Том 73. 1/2023

On the Practical Generation of Counterfactual Examples

of the robustness of a machine learning model. Adver-
sarial examples, in particular, are looking for precisely
the minimum possible changes in the initial data that
change the operation of the model. Accordingly, at
least in theory, counterfactuals can be used to test the
robustness of a machine learning model as well as for
studying (checking) the fairness and transparency of
algorithms. Counterfactual examples as tests should
be more understandable (interpretable) as we tie them
to some real conclusion. These examples will be creat-
ed based on the interpretation (explanation) of the real
conclusion (the result of the model).

In order to discuss counterfactuals, we have to
turn to causality. The ability to understand causal rela-
tionships and to reason from them is one of the main
human abilities [4]. Understanding physical causal
relationships are fundamental to using any tool [5].
For example, people to people management (rela-
tions) is based on the understanding of psychological
causal relationships. In many works, it is noted that
it is convenient for human psychology to explain any
conclusions by means of contrasting rather than direct
explanations. We can explain, for example, a certain
classification by giving reasons why only a certain
class is chosen and why others are rejected. In oth-
er words, the explanation can be based on the choice
and rejection of specific alternatives (results). This
“discriminatory” explanation is counterfactual. For
a machine learning system, counterfactual examples
are input data that changes the result (classification,
solution). The academic literature notes that this ap-
proach is more in line with emerging regulatory con-
straints, such as the General Data Protection Regula-
tion (GDPR) [20]. The counterfactual approach helps
to establish three important characteristics of the inter-
pretability of models:
• determine how the interpretation of the model was

made,
• provides opportunities for correcting unfavorable

decisions
• provides hints for obtaining expected results in

forecasting
As it is stated in [4], causal understanding thus

maintains the kinds of cognition that have been pro-
posed as part of the distinctively human cognitive
toolbox. And in both the physical and psychological
domains, causal knowledge is linked with sophisticat-
ed inferences about the counterfactual past. There are
two distinctive features of causal knowledge, which
are captured by causal models [4]:
1) causal knowledge supports a distinctive set of in-

ferences involving interventions and counterfactu-
als. So, causal knowledge supports counterfactual
claims;

2) causal knowledge involves not only specific rela-
tions between particular causes and effects but co-
herent networks of causal relations.

And one of the main statements from [4]: “coun-
terfactual and intervention reasoning, and Bayesian
learning all involve the same cognitive machinery:
the ability to consider events that have not occurred”.
This is, in fact, a direct reference to the basic idea of
machine learning. We train the network on a training
dataset with the idea that a generalization will be built
that will work correctly on the rest of the data, which,
generally speaking, are unknown to us. We want to
generalize the learning outcomes for the entire general
population. That is, train the network to process data
(events) that do not yet exist.

2. The usage of counterfactuals
in machine learning

Counterfactual explanations are gaining attention
as a way to explain the decisions of a machine learning
model. There are several technical ways to generate
and evaluate counterfactuals, such as feature-based
explanations, prototype explanations, example-based
explanations, or causal explanations [6].

We define a feature-highlighting explanation as
an explanation that points to specific features in the
model that matter to the individual decision. Of course,
each type of feature-highlighting explanation may de-
fine this “matter” differently. There are two types of
feature-highlighting explanations: counterfactual ex-
planations and principal reason explanations. Princi-
pal reason explanation is defined in [8] as the reasons
defined by law. Or more broadly, we could describe
them as reasons based on some predefined set (some
vocabulary).

The goal of counterfactual explanations is to ex-
plain how things could have been different, as well as
provide a set of features changes for reaching a dif-
ferent output of the model in the future. Counterfac-
tual explanations are generated by identifying such
features that, if minimally changed, would alter the
output of the model. For example, counterfactual ex-
planations are trying to find the “nearest” hypothetical
point that is classified differently from the point cur-
rently in question [7].

In other words, identifying the set of features
results in the desired prediction while remaining at a
minimum distance from the original set of features de-
scribing the individual [7]. It is illustrated in Fig. 1.

Suppose we are going to present counterfactual
explanations for classification models, which are func-
tions mapping input feature vectors x ∈ X into label
c ∈ {C1, C2, … Cn}. Actually, the most of research

76 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных D.E. Namiot, E.A. Ilyushin, I.V.Chizov

papers in this area have applied counterfactual expla-
nations to classification tasks. Given a classification
model [7]

f : X → { C1, C2, … Cn },

we can define the set of counterfactual explanations
for a (factual) input x̂ ∈ X as CFf (x̂) = {x ∈ X | f(x) ≠
f(x̂)}. In other words, CFf (x̂) contains all the inputs x
for which the model f returns a classification different
from f(x̂).

For prediction models, this is defined similarly,
only the mapping will be carried out into the set {0, 1}

Based on the above-defined counterfactual space
CFf (x̂), we would like to produce counterfactual ex-
planations for the output of a model f on a given input
by trying to find a nearest counterfactual, which is de-
fined as: x̂ * ∈ argmin d(x, x̂) for x ∈ CFf(x̂)

Fig. 1. Architecture Overview for Model-Agnostic
Counterfactual Explanations (MACE) [7]

Prototype-based counterfactual explanations
are discussed in the paper [9]. Since we cannot in-
terpret the black box, our first task is to create an
interpreted view for it. This is exactly what proto-
typing-based methods do. The work of the black
box is being prototyped. As a first step, we need to
find a representative dataset. The maximum mean
discrepancy (a distance on the space of probability
measures) is used to calculate the representativeness.
After that prototype-based explanations provide the
nearest prototype as explanations for a given test
instance [10]. In some papers, a similar approach is
called an example-based explanation: example-based
approaches seek to find data points in the vicinity of
the explainee data point. They either offer explana-
tions in the form of data points that have the same
prediction as to the explainee data point or the data
points whose prediction is different from the explain-
ee datapoint [11]. In other words, example-based ap-
proaches are another kind of explainability technique
used to explain a particular outcome.

In general, the explainability problem for ma-
chine learning systems can be presented as model
explanation or outcome explanation problems. As per
definition, a model explanation is about an interpreta-
ble and transparent explanation of the original model.

As the developed techniques for neural networks
explanations, we could mention decision trees [12, 13]
and rule sets [14, 15]. As per software tools, there are
some model-agnostic packages. For example - Partition
Aware Local Model (PALM) [16]. PALM allows you to
study the structure of model conclusions using its ap-
proximation by surrogate models. This is to some extent
a general approach, also called partial modeling in the
literature. In such a model, we are trying to approximate
the general black box with “understandable” models.
This, in particular, should help in debugging models.
PALM approximates a neural network using a two-part
surrogate model, which includes a meta-model that par-
titions the training data, and a set of sub-models that ap-
proximate the patterns (solutions) within each partition.
The paper [17] describes an approximation algorithm,
GoldenEye, to select sets of attributes that influence
the work of the classifier. In fact, this is combinatorics,
when the possible combinations are sorted out.

Outcome explanation needs to provide an expla-
nation for just a specific prediction from the model.
This type of explanation does not affect the internal
logic of the models, but only deals with inferences.
There are model-specific approaches like Grad-CAM
[18] and model agnostic approaches like LIME [19]
have been proposed. All of them are provided either
feature attribution or model simplification methods.

3. Counterfactual and adversarial examples

In general, the performance (the predictive of
classification performance) for any machine learning
model is based on the assumption of a statistical sim-
ilarity of the distributions of training and production
(testing) data.

Note that in the general case, the general set of
data is unknown to us. Accordingly, it is unknown not
only how the training and test data correlate with each
other, but also how the test and training data separately
correlate with the general population.

In the classic example [22], we have (an actually
unknown) some sine curve, the test and training data
for which just happened to be on different crests (Fig.
2). Both the training and test data are perfectly (very
accurately) approximated by some straight line, but
these are completely different straight lines (different
angles of inclination).

And in the general case, we cannot assume sim-
ilar distributions. The only way to somehow guaran-
tee this, obviously, involves exhaustive knowledge of
the population. In some tasks, this is really possible,
but this is usually the point that is not discussed in the
works on machine learning, although, of course, it de-
serves separate consideration.

77Труды ИСА РАН. Том 73. 1/2023

On the Practical Generation of Counterfactual Examples

Since, in fact, when creating a model, we only
know the training data and, accordingly, their statisti-
cal characteristics, studying the operation of the model
on data whose distribution differs from the distribu-
tion of the training data looks like a natural process.
As noted in [23], evaluation of out-of-distribution data
is a common practice in NLP and image proceedings.

Fig. 2. Training and test samples [22]
 And the reason for this is the different distributions
of test and training data (Fig.3).

Fig. 3. Distribution shift [22]

One fact may be noted here. Model errors (poor
generalization) are often associated precisely with
what is called network overtraining [24]. This happens
when the models rely on some training dataset-specific
biases and artifacts rather than intrinsic properties of
the data. When these biases do not exist in the pro-
duction data, the performance of the models can drop
dramatically. The keywords here are “intrinsic prop-
erties”. And the way to identify them is just counter-
factual examples. We change the data, the solution of
the system is reversed, which allows us to assume that
the changed (deleted) data are the main characteristics

based on which the machine learning model makes a
decision.

In ideology, this is similar to competitive ex-
amples, but their search is carried out not through a
sequential selection of modifications that change the
solution, but by one-time changes that change the
“meaning” of the image. The emphasis is on pairs: the
image and its counterfactual example(s).

In this connection, we could cite works that dis-
cussed generalization from a causal perspective [25,
26]. To provide generalization, the model must reflect
the real causal mechanisms behind the data.

One practical example that can be mentioned
(and actually used) in this situation.

Fig.4. Attention areas [27]

Using the well-known approach for evaluating
areas of the image that attract attention [27], one can
try to build counterfactual examples by removing just
these areas. In this work, this was illustrated by a ten-
nis player, where attention was drawn to the racket and
the surface (Fig. 4). Strictly speaking, it was on these
parts of the image that a person evaluated the image.
In our case, this was used on a traffic sign recognition
system (Fig. 5), and images (Fig. 6)

The counterfactual examples constructed in this
way were used for adversarial training and increasing
robustness.

78 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных D.E. Namiot, E.A. Ilyushin, I.V.Chizov

Summarizing these results, we can say that coun-
terfactual examples are adversarial examples built with
image semantics in mind. If we talk about the classical
form of constructing adversarial examples, then we
operate with pixels in the framework of L-norms, and
not with image fragments. Of course, we should be
talking about data in general here, but in practice, we
are talking about images (as in the vast majority of
works related to sustainable machine learning) and, as
discussed in the next section, texts.

Note that the analysis of the content of images
corresponds to the ideas outlined in the pioneering
work [28], where the authors propose a new model for
deep learning based precisely on enlarged fragments.
The current state of research suggests that, within the
framework of per-pixel processing, the robustness of
machine learning systems cannot be ensured.

4. On practical examples

Which in the end can be used to prepare counter-
factual examples in practical applications?

A. Counterfactual examples for texts
Counterfactual examples for text represent the

simplest and most clearly interpretable model. Several

approaches to generating such examples are described
in the literature, in a simple form they can be present-
ed:

If we have a sentence in the “Who did what” for-
mat, then building a counterfactual example is, in fact,
a well-known exercise from foreign language text-
books - “make a new sentence that denies the original
statement (“No one did it” format)

For example, such negation formats are given in
[29] for the source text “I am very disappointed with
the service”:

There is practically no difference between the
approaches, since technically they do pretty much the
same thing. As an example of software (a toolkit that
can be used in your own projects), you can cite, for
example, Checklist [30].

It is a system built on the basis of templates. Here
is a typical example (source data https://github.com/
marcotcr/checklist)
import checklist
from checklist.editor import Editor
import numpy as np
editor = Editor()
ret = editor.template(‘{first_name} is {a:profession}
from {country}.’,
profession=[‘lawyer’, ‘doctor’, ‘accountant’])
np.random.choice(ret.data, 3)
and here is the result:
[‘Mary is a doctor from Afghanistan.’,
‘Jordan is an accountant from Indonesia.’,
‘Kayla is a lawyer from Sierra Leone.’]

To generate the Checklist uses the set of pre-
defined templates, lexicons, generic perturbations,
and context-sensitive sentences. The main limitation
of these pattern-based or rule-based approaches is that
they cannot generate meaningful diversity [29].

Token-based Substitution in Table 1 uses either
single word replacements or some templates to generate
multiple test cases. Adversarial examples, as usual, do not
evaluate the text at all (do not appreciate the meaning).

Other approaches are used, for example, to gen-
erate text GPT-2, BERT, or bag-of-words models [31].
In general, we can characterize this direction as quite
developed from a practical point of view, with ready-
to-use tools.

B. Counterfactual examples for images
Originally, Search for EviDence Counterfac-

tual (SEDC) is the model-agnostic search algorithm

Fig.5. Road sign: original (left) and counterfactual
(right)

Fig. 6. Images: original (left) and counterfactual
(right)

Table 1
TEXT COUNTEFACTUALS

Input Sentence Token-based
Substitution

Adversarial attack
Controlled

Counterfactual Generation
I am very pleased with the service.
I am very happy with the service.

I am very impressed with the service.
I am very witty with the service.

I am very happy with this service.
I am very pleased with the service.

79Труды ИСА РАН. Том 73. 1/2023

On the Practical Generation of Counterfactual Examples

(SEDC) to find counterfactual explanations for doc-
ument classifications. According to this algorithm, the
explanation can be considered as an irreducible set
of characteristics (for example, for text documents –
words), which, in their absence, would change the
classification of the document.

The modification presented in [32] as a set of
characteristics uses segments into which the original
image is divided. As noted above, for images, again,
not pixel processing is used, but manipulations with
significant elements of the image. Accordingly, the
explanation for an image is an irreducible number of
segments, the removal of which will change the classi-
fication of the image.

As per [32], consider an image I assigned to class
c by a classifier C the objective is to find a counterfac-
tual explanation E as an irreducible set of segments
that leads to another classification after removal. For-
mally:
E ⊆ I (segments in image)
C(I \ E) ≠ c (class change)
∀ E’ ⊂ E : C(I \ E’) = c (irreducible)

The counterfactual explanation, in this case, is
the classification of the image that is obtained after re-
moving the segments.

The original work thus defined the “minimal”
image, which was still classified as an “airplane” (fu-
selage without wings). Approaches similar to this have
been illustrated above.

In [33], with the telling title “Explanations based
on the missing”, this is described as pertinent positive
(PP) and pertinent negative (PN). The PP is a factor
that is minimally required for the justification of the
final decision and the PN is a factor whose absence is
minimally required for justifying the decision.

The basic implementation of SEDC is represent-
ed by the resource [34]. In the basic case, the image is
segmented, and then the segments are removed one by
one until the classification of the remaining “image”
changes. In a modified version of SEDC-T [32], seg-
ments are also removed one at a time, until the clas-
sification reaches the specified value. In other words,
SEDC-T gives a more detailed explanation of why the
image is not predicted as the correct class (removing
which segments leads to a given misclassification).

As for the actual segmentation of images, many
approaches can be used here, in addition to the atten-
tion map presented above. In fact, you can use a sim-
ple grid to divide the image into segments or use more
complex approaches that are widely presented in open
implementations [35]. The obvious advantages of se-
mantic segmentation are the possible explainability of
the results and the ability to use the results for physical
attacks (for example, to hide part of the image with a

patch). We also note that semantic image segmentation
is also present in popular packages for machine learn-
ing, such as Keras and Tensorflow [39].

C. Counterfactual examples for sounds
Counterfactual examples for sound classification

present a more exotic challenge. In practice, we can
only give an example from [21]. Here, the validity of
automatic speech recognition (ASR) models was stud-
ied. The same text was recorded in different voices (for
different ethnic groups, different sexes, and ages). At the
same time, the work of the recognition system should
not be disturbed. The paper practically shows that the
widely used automatic speech recognition systems are
unfair, since some groups of users had a higher error
rate than others. One way to define fairness in ASR is to
require that changing any person’s demographic group
(for example, changing their gender, age, education, or
race) does not change the probability distribution be-
tween the possible speech-to-text transformations. In
the counterfactual justice paradigm, all variables that
do not depend on group membership (for example, the
text read by the speaker) remain unchanged, while vari-
ables that depend on group membership (for example,
the speaker’s voice) change counterfactually. Therefore,
one can attempt to achieve a fair ASR performance by
teaching the ASR to minimize the change in the proba-
bilities of recognition outcomes despite the counterfac-
tual change in human demographics.

Conclusion

In this article, we focused on generating adver-
sarial tests for machine learning systems. As we noted
in previous works, testing machine learning systems is
robustness testing.

Traditional methods, considered as an optimi-
zation problem of finding the smallest modifications
that change the results of the classification, give, in
the end, very limited results in terms of increasing
stability. And, most importantly, the proposed modifi-
cations are completely artificial by their nature, in no
way connected with possible attacks. In this regard, in
this paper, we justified the use of counterfactual exam-
ples for generating tests, since they are related to the
semantical analysis of data.

The purpose of this paper was to present practical
reusable solutions for generating counterfactual exam-
ples for various types of input data. The result of our
research, based on the practical use of various prod-
ucts, is the presentation of a pipeline for constructing
counterfactual examples in image recognition and text
classification problems.

Creating counterfactual examples for text clas-
sification is currently a purely technical task. The

80 Труды ИСА РАН. Том 73. 1/2023

Интеллектуальный анализ данных D.E. Namiot, E.A. Ilyushin, I.V.Chizov

question is only in choosing the most convenient soft-
ware implementations. The algorithms are quite trans-
parent and can be built into your own applications.
We propose to use template-based systems, like the
above-mentioned Checklist.

In terms of building counterfactual examples for
images, the best choice, in our opinion, is the semantic
segmentation of images. We propose to use the open
source implementation of SEDC-T. Alternative meth-
ods to some extent reproduce approaches to construct-
ing adversarial examples and are based on a formal
assessment of the change in the quality of the system
when modifying images.

Counterfactual examples for sound classification
(important, for example, for biometric identification
systems) are the least developed area. To date, we
cannot offer practical solutions in this direction. One
reason for this is the nature of existing classification
systems, which rely on various artificially created
characteristics. For example, wavelet transforms, etc.
With their use, the reverse transition to modifications
of the original sound characteristics becomes unclear.

We are grateful to the staff of the Department of
Information Security of the Faculty of Computational
Mathematics and Cybernetics, Lomonosov Moscow
State University for valuable discussions of this work.

 References

1. Namiot, Dmitry, Eugene Ilyushin, and Ivan
Chizhov. “On a formal verification of machine
learning systems.” International Journal of Open
Information Technologies 10.5 (2022): 30-34.

2. Li, Huayu, and Dmitry Namiot. “A Survey of Ad-
versarial Attacks and Defenses for image data on
Deep Learning.” International Journal of Open
Information Technologies 10.5 (2022): 9-16.

3. Artificial Intelligence in Cybersecurity. http://
master.cmc.msu.ru/?q=ru/node/3496 (in Rus-
sian) Retrieved: May, 2022

4. Buchsbaum, Daphna, et al. “The power of possi-
bility: Causal learning, counterfactual reasoning,
and pretend play.” Philosophical Transactions
of the Royal Society B: Biological Sciences
367.1599 (2012): 2202-2212.

5. Sterelny, Kim. “Language, gesture, skill: the
co-evolutionary foundations of language.” Phil-
osophical Transactions of the Royal Society B:
Biological Sciences 367.1599 (2012): 2141-
2151.

6. Kasirzadeh, Atoosa and Andrew Smart. “The use
and misuse of counterfactuals in ethical machine
learning.” Proceedings of the 2021 ACM Con-

ference on Fairness, Accountability, and Trans-
parency. 2021.

7. Amir-Hossein Karimi, Gilles Barthe, Borja Belle,
and Isabel Valera. 2019. Model-Agnostic Coun-
terfactual Explanations for Consequential Deci-
sions. arXiv preprint arXiv:1905.11190 (2019)

8. Barocas, Solon, Andrew D. Selbst, and Man-
ish Raghavan. “The hidden assumptions be-
hind counterfactual explanations and principal
reasons.” Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency.
2020.

9. Duong, Tri Dung, Qian Li, and Guandong Xu.
“Prototype-based Counterfactual Explanation
for Causal Classification.” arXiv preprint arX-
iv:2105.00703 (2021).

10. Yadav, Chhavi, and Kamalika Chaudhuri. “Be-
havior of k-NN as an Instance-Based Explana-
tion Method.” arXiv preprint arXiv:2109.06999
(2021).

11. Verma, Sahil, John Dickerson, and Keegan
Hines. “Counterfactual explanations for ma-
chine learning: A review.” arXiv preprint arX-
iv:2010.10596 (2020).

12. Thiagarajan, Jayaraman J., et al. “Treeview:
Peeking into deep neural networks via fea-
ture-space partitioning.” arXiv preprint arX-
iv:1611.07429 (2016).

13. Boz, Olcay. “Extracting decision trees from
trained neural networks.” Proceedings of the
eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining.
2002.

14. Santos, Raul T., Júlio C. Nievola, and Alex A.
Freitas. “Extracting comprehensible rules from
neural networks via genetic algorithms.” 2000
IEEE Symposium on Combinations of Evo-
lutionary Computation and Neural Networks.
Proceedings of the First IEEE Symposium on
Combinations of Evolutionary Computation
and Neural Networks (Cat. No. 00. IEEE, 2000.

15. Andrews, Robert, Joachim Diederich, and Alan
B. Tickle. “Survey and critique of techniques
for extracting rules from trained artificial neu-
ral networks.” Knowledge-based systems 8.6
(1995): 373-389.

16. Krishnan, Sanjay, and Eugene Wu. “Palm: Ma-
chine learning explanations for iterative debug-
ging.” Proceedings of the 2nd Workshop on
Human-In-the-Loop Data Analytics. 2017.

17. Henelius, Andreas, et al. “A peek into the
black box: exploring classifiers by randomiza-
tion.” Data mining and knowledge discovery 5
(2014): 1503-1529.

81Труды ИСА РАН. Том 73. 1/2023

On the Practical Generation of Counterfactual Examples

18. Selvaraju, Ramprasaath R., et al. “Grad-cam: Vi-
sual explanations from deep networks via gradi-
ent-based localization.” Proceedings of the IEEE
international conference on computer vision. 2017.

19. Ribeiro, Marco Tulio, Sameer Singh, and Car-
los Guestrin. “Model-agnostic interpretabili-
ty of machine learning.” arXiv preprint arX-
iv:1606.05386 (2016).

20. Gohel, Prashant, Priyanka Singh, and Man-
oranjan Mohanty. “Explainable AI: current sta-
tus and future directions.” arXiv preprint arX-
iv:2107.07045 (2021).

21. Sari, Leda, Mark Hasegawa-Johnson, and Chang
D. Yoo. “Counterfactually Fair Automatic Speech
Recognition.” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing (2021).

22. Francisco Herrera Dataset Shift in Classi-
fication: Approaches and Problems http://
iwann.ugr.es/2011/pdf/InvitedTalk-FHerre-
ra-IWANN11.pdf Retrieved: Sep, 2021

23. Teney, Damien, Ehsan Abbasnedjad, and An-
ton van den Hengel. “Learning what makes a
difference from counterfactual examples and
gradient supervision.” Computer Vision–ECCV
2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part X
16. Springer International Publishing, 2020.

24. Roelofs, Rebecca, et al. “A meta-analysis of
overfitting in machine learning.” Proceedings
of the 33rd International Conference on Neural
Information Processing Systems. 2019.

25. Heinze-Deml, Christina, and Nicolai Mein-
shausen. “Conditional variance penalties and
domain shift robustness.” arXiv preprint arX-
iv:1710.11469 (2017).

26. Meinshausen, Nicolai. “Causality from a distri-
butional robustness point of view.” 2018 IEEE
Data Science Workshop (DSW). IEEE, 2018.

27. Das, Abhishek, et al. “Human attention in visu-
al question answering: Do humans and deep net-
works look at the same regions?.” Computer Vision
and Image Understanding 163 (2017): 90-100.

28. Bengio, Yoshua, Yann Lecun, and Geoffrey Hin-
ton. “Deep learning for AI.” Communications
of the ACM 64.7 (2021): 58-65.

29. Madaan, Nishtha, et al. “Generate your coun-
terfactuals: Towards controlled counterfac-
tual generation for text.” arXiv preprint arX-
iv:2012.04698 (2020).

30. Ribeiro, M.T., Wu, T., Guestrin, C. and Singh,
S. 2020. Beyond Accuracy: Behavioral Testing
of NLP Models with CheckList. arXiv preprint
arXiv:2005.04118 .

31. Dathathri, Sumanth, et al. “Plug and play
language models: A simple approach to con-
trolled text generation.” arXiv preprint arX-
iv:1912.02164 (2019).

32. Vermeire, Tom, and David Martens. “Explainable
image classification with evidence counterfactu-
al.” arXiv preprint arXiv:2004.07511 (2020).

33. Dhurandhar, Amit, et al. “Explanations based on
the missing: Towards contrastive explanations
with pertinent negatives.” arXiv preprint arX-
iv:1802.07623 (2018).

34. SEDC implementation https://github.com/yra-
mon/edc Retrieved: May, 2022

35. Van der Walt, Stefan, et al. “scikit-image: image
processing in Python.” PeerJ 2 (2014): e453.

36. He, Xin, Kaiyong Zhao, and Xiaowen Chu. “Au-
toML: A survey of the state-of-the-art.” Knowl-
edge-Based Systems 212 (2021): 106622.

37. Namiot, Dmitry, Eugene Ilyushin, and Oleg Pili-
penko. “On Trusted AI Platforms.” International
Journal of Open Information Technologies 10.7
(2022): 119-127. (in Russian)

38. Ilyushin, Eugene, Dmitry Namiot, and Ivan
Chizhov. “Attacks on machine learning sys-
tems-common problems and methods.” Interna-
tional Journal of Open Information Technologies
10.3 (2022): 17-22. (in Russian)

39. Dadhich, Abhinav. Practical Computer Vision:
Extract Insightful Information from Images Using
TensorFlow, Keras, and OpenCV. Packt Publish-
ing Ltd, 2018.

D.E. Namiot. Dr. of Sci., Lomonosov Moscow State University, MSU, Faculty of Computational Mathematics and
Cybernetics, Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory, dnamiot@gmail.com (сorrespondent author)
E.A. Ilyushin. MSU, Faculty of Computational Mathematics and Cybernetics, Russia, 119991, Moscow, GSP-1,
1-52, Leninskiye Gory, john.ilyushin@gmail.com
I.V. Chizov. PhD, docent, Lomonosov Moscow State University; Federal Research Center “Computer Science
and Control” of the Russian Academy of Sciences, MSU, Faculty of Computational Mathematics and Cybernetics,
Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory, ichizhov@cs.msu.ru

