Эксперименты по применению инфразвукового метода дистанционного мониторинга снежных лавин в Хибинах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнен анализ результатов экспериментов по применению сейсмических и инфразвуковых методов дистанционного мониторинга схода снежных лавин, проводимых в Хибинском горном массиве. Применение кросс-корреляционного анализа для данных инфразвуковых групп позволяет обнаруживать факты схода снежных лавин, а при использовании нескольких станций также определить место их схода. Создан первый в России экспериментальный стационарный комплекс инфразвукового мониторинга снежных лавин.

Об авторах

А. В. Федоров

Кольский филиал Федерального исследовательского центра «Единая геофизическая служба Российской академии наук»

Email: ifedorov@krsc.ru
Россия, Апатиты

И. С. Федоров

Кольский филиал Федерального исследовательского центра «Единая геофизическая служба Российской академии наук»

Автор, ответственный за переписку.
Email: ifedorov@krsc.ru
Россия, Апатиты

В. Э. Асминг

Кольский филиал Федерального исследовательского центра «Единая геофизическая служба Российской академии наук»

Email: ifedorov@krsc.ru
Россия, Апатиты

А. Ю. Моторин

Кольский филиал Федерального исследовательского центра «Единая геофизическая служба Российской академии наук»

Email: ifedorov@krsc.ru
Россия, Апатиты

Список литературы

  1. Асминг В.Э., Федоров А.В., Виноградов Ю.А., Чебров Д.В., Баранов С.В., Федоров И.С. Быстрый детектор инфразвуковых событий и его применение // Геофизические исследования. 2021. Т. 22. № 1. С. 54–67. https://doi.org/10.21455/gr2021.1-4
  2. Викулина М.А. Оценка лавинного риска в Хибинах // ИнтерКарто/ИнтерГИС. 2019. Т. 25. № 2. С. 66–76.
  3. Мягков С.М. География лавин / Ред. С.М. Мягкова, Л.А. Канаева. М.: Изд-во МГУ, 1992. 331 с.
  4. Пильгаев С.В., Черноус П.А., Филатов М.В., Ларченко А.В., Федоренко Ю.В. Комплекс лавинно-обвальной сигнализации // Тр. Кольского науч. центра РАН. 2016. № 4–2 (38). С. 98–101.
  5. Тимофеев В.Г. Снежно-метеорологическая служба Хибин / Ред. В.Г. Тимофеев. М.: Изд-во АИРО-XXI, 2017. 352 с.
  6. Федоров А.В., Федоров И.С., Воронин А.И., Асминг В.Э. Мобильный комплекс инфразвуковой регистрации снежных лавин: общий принцип построения и результаты применения // Сейсмические приборы. 2021. Т. 57. № 1. С. 5–15. https://doi.org/10.21455/si2021.1-1
  7. Фирстов П.П., Суханов А.А., Пергамент В.Х. Радионовский М.В. Акустические и сейсмические сигналы от снежных лавин // Докл. АН СССР. 1990. Т. 312. № 1. С. 67–71.
  8. Шмелев В.А. Система безопасности движения на горных участках // Путь и путевое хозяйство. Москва: Российские железные дороги, 2011. № 1. С. 17–18.
  9. Bedard A. Detection of Avalanches Using Atmospheric Infrasound // Proc. Western Snow Conference. Fort Collins, 1989. P. 52–58.
  10. Biescas B., Dufour F., Furdada G., Khazaradze G., Suriñach E. Frequency content evolution of snow avalanche seismic signals // Surveys in Geophysics. 2003. V. 24. P. 447–464.
  11. Comey R., Mendenhall T. Recent Studies Using Infrasound Sensors to Remotely Monitor Avalanche Activity // Proceedings, International Snow Science Workshop. Wyoming, 2004. P. 640–646.
  12. Gauer P., Kern M., Kristensen K., Lied K., Rammer L., Schreiber H. On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics // Cold Regions Science and Technology. 2007. V. 50. P. 55–71. https://doi.org/10.1016/j.coldregions.2007.03.009
  13. Heck H., Hobiger M., van Herwijnen A., Schweizer J., Fah D. Localization of seismic events produced by avalanches using multiple signal classification // Geophys. Journ. International. 2017. V. 216 (1). P. 201–217. https://doi.org/10.1093/gji/ggy394
  14. Lacroix P., Grasso J.-R., Roulle J., Giraud G., Goetz D., Morin S., Helmstetter A. Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables // Journ. of Geophys. Research. 2012. V. 117. F01034. https://doi.org/10.1029/2011JF002106
  15. Marchetti E., Ripepe M., Ulivieri G., Kogelnig A. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system // Natural Hazards and Earth System Sciences 2015. V. 15. P. 2709–2737. https://doi.org/10.5194/nhess-15-2545-2015
  16. Marchetti E., van Herwijnen A., Christen M., Silengo M.C., Barfucci G. Seismo-acoustic energy partitioning of a powder snow avalanche // Earth Surface Dynamics. 2020. V. 8. P. 399–411. https://doi.org/10.5194/esurf-8-399-2020
  17. Mayer S., Van Herwijnen A., Ulivieri G., Schweizer J. Evaluating the performance of an operational infrasound avalanche detection system at three locations in the Swiss Alps during two winter seasons // Cold Regions Science and Technology. 2020. V. 173. 102962. https://doi.org/10.1016/j.coldregions.2019.102962
  18. McClung D., Schaerer P. The Avalanche Handbook. Washington, U.S.A.: The Mountaineers Books, 2006. 342 p.
  19. Michael A., Hedlin H., Alcoverro B., D’Spain G. Evaluation of rosette infrasonic noise-reducing spatial filters // Journ. of Acoustic Society Amer. 2003. V. 114 (4). P. 1807–1820. https://doi.org/10.1121/1.1603763
  20. Pérez-Guillén C., Sovilla B., E. Suriñach E., Tapia M., Köhler A. Deducing avalanche size and flow regimes from seismic measurements // Cold Regions Science and Technology. 2016. V. 121. P. 25–41.
  21. Prokop A., Schön P., Wirbel A., Jungmayr M. Monitoring avalanche activity using distributed acoustic fiber optic sensing // Proc., International Snow Science Workshop. Banff, 2014. P. 129–133.
  22. Schimmel A., Hubl J., Koschuch R., Reiweger I. Automatic detection of avalanches: evaluation of three different approaches // Natural Hazards. 2017. V. 87. P. 83–102.https://doi.org/10.1007/s11069-017-2754-1
  23. Scott E.D, Hayward C.T, Kubicheck R., Hammon J., Pierre J., Comey B., Mendenhall T. Single and Multiple Sensor Identification of Avalanche Generated Infrasound // Cold Regions Science and Technology. 2007. V. 47. P. 159–170. https://doi.org/10.1016/j.coldregions.2006.08.005
  24. Steinkogler W., Ulivieri G., Vezzosi S., Hendrikx J., van Herwijnen A., Humstad T. Infrasound Detection of Avalanches: operational experience from 28 combined winter seasons and future developments // Proc. of the 2018 International Snow Science Workshop. Austria, 2018. P. 621–626. https://doi.org/10.1016/j.coldregions.2015.10.004
  25. van Herwijnen A., Schweizer J. Monitoring avalanche activity using a seismic sensor // Cold Regions Science and Technology. 2011. V. 69. P. 165–176. https://doi.org/10.1016/j.coldregions.2011.06.008
  26. Vilajosana I., Khazaradze G., Surinach E., Lied E., Kristensen K. Snow avalanche speed determination using seismic methods // Cold Regions Science and Technology. 2007. V. 49. P. 2–10. https://doi.org/10.1016/j.coldregions.2006.09.007

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».