Skin microbiome in cancer patients with pruritus and other skin toxic reactions related to anticancer therapy: A review
- Authors: Polonskaia A.S.1, Michenko A.V.1,2,3, Kruglova L.S.1, Shatokhina E.A.1,3, Lvov A.N.1,3
-
Affiliations:
- Central State Medical Academy
- International Institute of Psychosomatic Health
- Medical Research and Educational Center (Lomonosov University Clinic)
- Issue: Vol 25, No 6 (2023): Personalized oncology in real clinical practice
- Pages: 400-405
- Section: Articles
- URL: https://bakhtiniada.ru/2075-1753/article/view/146515
- DOI: https://doi.org/10.26442/20751753.2023.6.202302
- ID: 146515
Cite item
Full Text
Abstract
Modern antitumor therapy includes novel targeted and immunotherapeutic options specifically targeting tumor targets. However, many of these targets are also expressed in the constantly proliferating epidermis of the skin, leading to derangement of proliferation and differentiation of keratinocytes, inflammatory responses, skin barrier dysfunction, inhibition of antimicrobial peptides' synthesis, and toxic skin reactions. The article presents an overview of current data on microbiome disorders associated with toxic skin reactions. The potential mechanisms of skin microbiome changes inducing the occurrence and persistence of rashes during anticancer therapy are addressed.
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandra S. Polonskaia
Central State Medical Academy
Author for correspondence.
Email: dr.polonskaia@gmail.com
ORCID iD: 0000-0001-6888-4760
Assistant
Russian Federation, MoscowAnna V. Michenko
Central State Medical Academy; International Institute of Psychosomatic Health; Medical Research and Educational Center (Lomonosov University Clinic)
Email: amichenko@mail.ru
ORCID iD: 0000-0002-2985-5729
SPIN-code: 8375-4620
Cand. Sci. (Med.)
Russian Federation, Moscow; Moscow; MoscowLarisa S. Kruglova
Central State Medical Academy
Email: kruglovals@mail.ru
ORCID iD: 0000-0002-5044-5265
SPIN-code: 1107-4372
D. Sci. (Med.), Prof.
Russian Federation, MoscowEvgeniya A. Shatokhina
Central State Medical Academy; Medical Research and Educational Center (Lomonosov University Clinic)
Email: e.a.shatokhina@gmail.com
ORCID iD: 0000-0002-0238-6563
SPIN-code: 3827-0100
D. Sci. (Med.), Prof.
Russian Federation, Moscow; MoscowAndrey N. Lvov
Central State Medical Academy; Medical Research and Educational Center (Lomonosov University Clinic)
Email: alvov@mail.ru
ORCID iD: 0000-0002-3875-4030
SPIN-code: 1053-3290
D. Sci. (Med.), Prof.
Russian Federation, Moscow; MoscowReferences
- Grice EA, Segre JA. The skin microbiome [Erratum in Nat Rev Microbiol. 2011;9(8):626]. Nat Rev Microbiol. 2011;9(4):244-53. doi: 10.1038/nrmicro2537
- Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694-7. doi: 10.1126/science.1177486
- Nakatsuji T, Chiang HI, Jiang SB, et al. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431. doi: 10.1038/ncomms2441
- Khlebnikova AN, Petrunin DD. Physiological and pathogenic role of cutaneous microbiota. Treatment algorithms of secondary infected dermatoses. Consilium Medicum. Dermatology (Suppl.). 2016;4:18-25 (in Russian).
- Murashkin NN, Epishev RV, Ivanov RA, et al. Innovations in Therapeutic Improvement of the Cutaneous Microbiome in Children with Atopic Dermatitis. Current Pediatrics. 2022;21(5):352-61 (in Russian). doi: 10.15690/vsp.v21i5.2449
- Woo YR, Cho SH, Lee JD, Kim HS. The Human Microbiota and Skin Cancer. Int J Mol Sci. 2022;23(3):1813. doi: 10.3390/ijms23031813
- Kehrmann J, Koch F, Zumdick S, et al. Reduced Staphylococcus Abundance Characterizes the Lesional Microbiome of Actinic Keratosis Patients after Field-Directed Therapies. Microbiol Spectr. 2023;11(3):e0440122. doi: 10.1128/spectrum.04401-22
- Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009;18(2):472-8. doi: 10.1158/1055-9965.EPI-08-0905
- Wood DLA, Lachner N, Tan JM, et al. A natural history of actinic keratosis and cutaneous squamous cell carcinoma microbiomes. mBio. 2018;9(5):e01432-18. doi: 10.1128/mBio.01432-18
- Madhusudhan N, Pausan MR, Halwachs B, et al. Molecular profiling of keratinocyte skin tumors links Staphylococcus aureus overabundance and increased human b-defensin-2 expression to growth promotion of squamous cell carcinoma. Cancers (Basel). 2020;12(3):541. doi: 10.3390/cancers12030541
- Molina-García M, Malvehy J, Granger C, et al. Exposome and Skin. Part 2. The Influential Role of the Exposome, Beyond UVR, in Actinic Keratosis, Bowen's Disease and Squamous Cell Carcinoma: A Proposal. Dermatol Ther (Heidelb). 2022;12(2):361-80. doi: 10.1007/s13555-021-00644-3
- Olisova OYu, Grabovskaya OV, Tetushkina IN, Kosoukhova OA. T-cell cutaneous lymphoma: diagnostic difficulties. Russian journal of skin and venereal diseases. 2013;3:4-6 (in Russian).
- Salava A, Deptula P, Lyyski A, et al. Skin Microbiome in Cutaneous T-Cell Lymphoma by 16S and Whole-Genome Shotgun Sequencing. J Invest Dermatol. 2020;140(11):2304-8.e7. doi: 10.1016/j.jid.2020.03.951
- Harkins CP, MacGibeny MA, Thompson K, et al. Cutaneous T-Cell Lymphoma Skin Microbiome Is Characterized by Shifts in Certain Commensal Bacteria but not Viruses when Compared with Healthy Controls. J Invest Dermatol. 2021;141(6):1604-8. doi: 10.1016/j.jid.2020.10.021
- Mrázek J, Mekadim C, Kučerová P, et al. Melanoma-related changes in skin microbiome. Folia Microbiol (Praha). 2019;64(3):435-42. doi: 10.1007/s12223-018-00670-3
- Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103. doi: 10.1126/science.aan4236
- Polonskaia AS, Shatokhina EA, Kruglova LS. Dermatologic adverse events associated with epidermal growth factor receptor inhibitors: current concepts of interdisciplinary problem. Head and Neck Tumors (HNT). 2021;11(4):97-109 (in Russian). doi: 10.17650/2222-1468-2021-11-4-97-109
- Michenko AV, Kruglova LS, Shatokhina EA. Dermatological toxicity of EGFR inhibitors: pathogenetic rationale and an algorithm for acne-like rash correction. Onkogematologiya = Oncohematology. 2021;16(4):50-8 (in Russian). doi: 10.17650/1818-8346-2021-16-4-50-58
- Ommori R, Nakamura Y, Miyagawa F, et al. Reduced induction of human β-defensins is involved in the pathological mechanism of cutaneous adverse effects caused by epidermal growth factor receptor monoclonal antibodies. Clin Exp Dermatol. 2020;45(8):1055-8. doi: 10.1111/ced.14311
- Jia Z, Bao K, Wei P, et al. EGFR activation-induced decreases in claudin1 promote MUC5AC expression and exacerbate asthma in mice. Mucosal Immunol. 2021;14(1):125-34. doi: 10.1038/s41385-020-0272-z
- Gerber PA, Kukova G, Buhren BA, Homey B. Density of Demodex folliculorum in patients receiving epidermal growth factor receptor inhibitors. Dermatology. 2011;222(2):144-7. doi: 10.1159/000323001
- Ramadan M, Hetta HF, Saleh MM, et al. Alterations in skin microbiome mediated by radiotherapy and their potential roles in the prognosis of radiotherapy-induced dermatitis: a pilot study. Sci Rep. 2021;11(1):5179. doi: 10.1038/s41598-021-84529-7
- Zhang M, Jiang Z, Li D, et al. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. Microb Ecol. 2015;69(2):415-21. doi: 10.1007/s0024 8-014-0504-4
- Briaud P, Bastien S, Camus L, et al. Impact of coexistence phenotype between Staphylococcus aureus and Pseudomonas aeruginosa isolates on clinical outcomes among cystic fibrosis patients. Front Cell Infect Microbiol. 2020;10:266. doi: 10.3389/fcimb.2020.00266
- Armbruster CR, Wolter DJ, Mishra M, et al. Staphylococcus aureus Protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa. mBio. 2016;7(3):e00538-16. doi: 10.1128/mBio.00538-16
Supplementary files
