Motion monitoring based on a finite state machine for precise indoor localization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents a precise stance detection method for accurate personal localization using a foot-mounted inertial measurement unit. The exact classification of the stance phases of the foot is realized with a finite state machine (FSM), which separates the human gait circle in different sub-states. The FSM-based approach provides high accurate and robust detections of Zero Velocity Updates (ZUPTs) which can be applied to the navigation filter. We use a constraint stochastic cloning (SC) Kalman filter to show the performance of the high precise ZUPT intervals with real world sensor data including forward, backward and staircase motion. Even for the movement type running and the signals of an ultra-low cost inertial measurement unit we achieve with our motion monitoring system a position estimation with an average error of less than 1.5% of the travelled distance.

作者简介

N. Kronenwett

Institute of Systems Optimization (ITE)

编辑信件的主要联系方式.
Email: nikolai.kronenwett@kit.edu
德国, Karlsruhe

J. Ruppelt

Institute of Systems Optimization (ITE)

Email: nikolai.kronenwett@kit.edu
德国, Karlsruhe

G. Trommer

Institute of Systems Optimization (ITE); ITMO University

Email: nikolai.kronenwett@kit.edu
德国, Karlsruhe; St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017