🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On (Unit-)Regular Morphisms


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce a symmetry property for unit-regular rings as follows: aR is unit-regular if and only if aR ⊕ (au)R = R (equivalently, RaR(au) = R) for some unit u of R if and only if aR ⊕ (au)R =(2au)R (equivalently, RaR(au) = R(2au)) for some unit u of R. Let M and N be right R-modules and α, β ∈ Hom(M, N) such that α + β is regular. It is shown that αSβS =(α + β)S, where S = End(M) if and only if = T(α + β), where T = End(N). We also introduce partial order αβ and minus partial order αβ for any α, β ∈ Hom(M, N); they translate into module-theoretic language defined in a ring in [7] and [8]. We analyze some relationships between ≤ and ≤ on the endomorphism rings of the modules M and N.

作者简介

T. Quynh

Department for Management of Science and Technology Development; Faculty of Mathematics and Statistics

编辑信件的主要联系方式.
Email: truongcongquynh@tdtu.edu.vn
越南, Ho Chi Minh City; Ho Chi Minh City

A. Abyzov

Department of Algebra and Mathematical Logic

编辑信件的主要联系方式.
Email: Adel.Abyzov@kpfu.ru
俄罗斯联邦, Kazan, 420008

M. Koşan

Department of Mathematics, Faculty of Sciences

编辑信件的主要联系方式.
Email: mtamerkosan@gazi.edu.tr
土耳其, Ankara

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019