🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Uniqueness Theorem for the Eigenvalues’ Function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the family of Sturm-Liouville operators, generated by fixed potential q and the family of separated boundary conditions. We prove that the union of the spectra of all these operators can be represented as the values of a real analytic function of two variables. We call this function “the eigenvalues’ function” of the family of Sturm-Liouville operators (EVF). We show that the knowledge of some eigenvalues for an infinite set of different boundary conditions is sufficient to determine the EVF, which is equivalent to uniquely determine the unknown potential. Our assertion is the extention of McLaughlin-Rundell theorem.

作者简介

T. Harutyunyan

Yerevan State University

编辑信件的主要联系方式.
Email: hartigr@yahoo.co.uk
亚美尼亚, Yerevan, 0025

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019