🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On the Radial Multipliers Method in the Gradient Elastic Fracture Mechanics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A non-singular solution of the gradient elastic fracture mechanics for the cracks of Modes I and II is constructed in this paper. Previously, a similar problem was solved only for cracks of Mode III. A generalized theory of elasticity is used, in which the governing equation in displacements is represented as a product of the Lamé operator and the Helmholtz operator, and the classical boundary value problem for the total stress is completely distinguished in the problems of crack mechanics. As a result, the determination of local stress fields reduces to solving the Helmholtz equations with the known right-hand side of the equations. The Papkovich-Neuber representation in a complex form is used to construct a solution of the mechanics of cracks. We used also the method of radial multipliers, which allows us to construct fundamental solutions of the Helmholtz equations corresponding to analytical functions with a fractional exponent and, as a result, to find solutions that compensate for the singularities.

作者简介

S. Lurie

Institute of Applied Mechanics

编辑信件的主要联系方式.
Email: salurie@mail.ru
俄罗斯联邦, Moscow, 125040

D. Volkov-Bogorodskiy

Institute of Applied Mechanics

编辑信件的主要联系方式.
Email: volkov-bogorodskij@iam.ras.ru
俄罗斯联邦, Moscow, 125040

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019