🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

High-performance Processing of Covariance Matrices Using GPU Computations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Practical applicability of many statistical algorithms is limited by large sizes of corresponding covariance matrices. These limitations can be significantly weakened due to effective use of the structure of covariance matrices, properties of the autocorrelation function, and advantages of the architecture of modern GPUs. This paper presents GPU implementations of the algorithms for inversion of a covariance matrix and solution of a system of linear equations whose coefficient matrix is a covariance matrix. Inversion of close to sparse covariance matrices is also considered in the work. For all the cases considered, significant accelerations were obtained in comparison with Octave mathematical software and ViennaCL computational library. For example, implemented algorithm of solution of a linear system was 6 times faster as compared with the implementation of Octave on the CPU and 3 times faster as compared with the ViennaCL implementation on the GPU for general matrices. The performance of inversion of a covariance matrix was 14 times faster than inversion algorithm of Octave on the CPU and 6 times faster than ViennaCL inversion algorithm on GPU.

作者简介

K. Erofeev

Kazan (Volga region) Federal University

编辑信件的主要联系方式.
Email: krllerof@gmail.com
俄罗斯联邦, Kazan, 420018

E. Khramchenkov

Kazan Branch of Joint Supercomputer Center

编辑信件的主要联系方式.
Email: ekhramch@gmail.com
俄罗斯联邦, Kazan, 420111

E. Biryal’tsev

Aff3

编辑信件的主要联系方式.
Email: igenbir@ya.ru
俄罗斯联邦, ZAO Gradient, Kazan, 420045

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019