🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Uzawa-type Iterative Solution Methods for Constrained Saddle Point Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For finite-dimensional saddle point problem with a nonlinear monotone operator and constraints on direct variables, iterative methods are developed, which in the potential case can be viewed as preconditioned Uzawa methods or as Uzawa-block relaxation methods. Convergence conditions of the iterative methods are formulated in the form of operator inequalities connecting the operator of the problem and the preconditioning matrix. When applied to mesh problems, this allows us to construct suitable preconditioners that ensure the convergence and effective implementation of iterative methods and to obtain the admissible intervals of iterative parameters which don’t depend on mesh parameters. The presented results are based on the general theory developed by the author with co-authors in recent years.

作者简介

A. Lapin

Institute of Computational Mathematics and Information Technologies

编辑信件的主要联系方式.
Email: avlapine@mail.ru
俄罗斯联邦, ul. Kremlevskaya 18, Kazan, 420008

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018