🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Continuous orbital invariants of integrable Hamiltonian systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study integrable Hamiltonian systems with 2 degrees of freedom on regular compact isoenergy 3-manifolds. Such a system is given by a pair (B,F) of a closed 2-form B without zeros and a Bott function F (called the first integral) with dFB = 0 on a compact 3-manifold Q endowed with a volume form. We prove that, under some additional assumptions, any continuous orbital invariant of integrable systems is “trivial”, i.e. it can be expressed in terms of local extremes of rotation functions on one-parameter families of invariant tori, provided that the systems admit a cross-section of genus 0. We also show which of nontrivial orbital invariants are continuous in the genus 1 case.

作者简介

E. Kudryavtseva

Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: eakudr@mech.math.msu.su
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017