🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The Method of Integral Equations in Problems of Wave Diffraction in Waveguides


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper studies the propagation of steady-state oscillations in an irregular rectangular waveguide. The irregularity of the waveguide is caused by the presence inside it of a metallic inclusion in the form of a cylindrical inductive cylinder. To solve the problem in a complete electrodynamic formulation, it is necessary to investigate the boundary problem for the system of Maxwell equations. To study the waveguide system consisting of a waveguide with a well-conducting inclusion, the method of integral equations was applied. The cores of the integral equations are defined through the Green functions of the unfilled waveguide, written in terms of the waveguide modes. Algorithms for their calculation are developed on the basis of the selection of a logarithmic singularity, and algorithms for summing up the series belonging to them are created. The possibilities of the method of integral equations are illustrated with examples of calculating the reflection and transmission coefficients from inductive pins.

Sobre autores

A. Il’inskii

Faculty of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: celd@cs.msu.su
Rússia, Moscow, 119991

T. Galishnikova

Faculty of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: tgalish@cs.msu.su
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019