🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On the Weight Lifting Property for Localizations of Triangulated Categories


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

As we proved earlier, for any triangulated category \(\underline C \) endowed with a weight structure w and a triangulated subcategory \(\underline D \) of \(\underline C \) (strongly) generated by cones of a set of morphism S in the heart \(\underline {Hw} \) of w there exists a weight structure w' on the Verdier quotient \(\underline {C'} = \underline C /\underline D \) such that the localization functor \(\underline C \to \underline {C'} \) is weight-exact (i.e., “respects weights”). The goal of this paper is to find conditions ensuring that for any object of \(\underline {C'} \) of non-negative (resp. non-positive) weights there exists its preimage in \(\underline C \) satisfying the same condition; we call a certain stronger version of the latter assumption the left (resp., right) weight lifting property. We prove that that these weight lifting properties are fulfilled whenever the set S satisfies the corresponding (left or right) Ore conditions. Moreover, if \(\underline D \) is generated by objects of \(\underline {Hw} \) then any object of \(\underline {Hw'} \) lifts to \(\underline {Hw} \). We apply these results to obtain some new results on Tate motives and finite spectra (in the stable homotopy category). Our results are also applied to the study of the so-called Chow-weight homology in another paper.

Sobre autores

M. Bondarko

Department of Mathematics and Mechanics

Autor responsável pela correspondência
Email: m.bondarko@spbu.ru
Rússia, Universitetskii pr. 28, St. Petersburg, 198904

V. Sosnilo

Chebyshev Laboratory

Email: m.bondarko@spbu.ru
Rússia, St. Petersburg, 199178

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018