🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Transformation of Irregular Solid Spherical Harmonics with Parallel Translation of the Coordinate System


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Solid spherical harmonics and spherical functions are widely used for studying physical phenomena in spatial domains bounded by spherical or nearly-spherical surfaces. In this case, it is frequently needed to transform these functions with a parallel translation of the coordinate system. Specifically, this scenario arises in describing the hydrodynamic interaction of spherical or weakly-nonspherical gas bubbles in the unbounded volume of an incompressible fluid. In the two-dimensional (axisymmetric) case, when Legendre polynomials act as spherical functions, the transformation can be conducted with a well-known compact expression. In the three-dimensional case, similar well-known expressions are rather complex (for example, the Clebsch–Gordan coefficients are used in these expressions), which makes their use difficult. This paper describes a derivation of such an expression that naturally leads to a compact form of the respective coefficients. Actually, these coefficients are a generalization to the three-dimensional case of similar well-known coefficients in the two-dimensional (axisymmetric) case.

Sobre autores

A. Aganin

Institute of Mechanics and Engineering, Kazan Scientific Center

Autor responsável pela correspondência
Email: aganin@kfti.knc.ru
Rússia, Kazan, 420111

A. Davletshin

Institute of Mechanics and Engineering, Kazan Scientific Center

Email: aganin@kfti.knc.ru
Rússia, Kazan, 420111

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018