🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On Some Formulas for Families of Curves and Surfaces and Aminov’s Divergent Representations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A unit vector field τ in the Euclidean space E3 is considered. Let P be the vector field from the first Aminov’s divergent representation K = div{(R · τ)P} for the total curvature of the second kind K of the field τ. For the field P, an invariant representation of the form P = −rotR* is obtained, where the field R* is expressed in terms of the Frenet basis (τ, ν, β) and the first curvature k and the second curvature κ of the streamlines Lτ of the field τ. Formulas relating the quantities K (or P), κ, τ, ν, and β are derived. Three-dimensional analogs of the conservation law div Sp* = 0 (which is valid for a family of plane curves Lτ) are obtained, where Sp* is the sum of the curvature vectors of the plane curves Lτ and their orthogonal curves Lν. It is shown that if the field τ is holonomic: 1) the vector field S(τ) from the second Aminov’s divergent representation K = −1/2 div S(τ) can be interpreted as the sum of three curvature vectors of three curves related to surfaces Sτ with the normal τ; 2) the non-holonomicity values of the fields of the principal directions l1 and l2 are equal.

Sobre autores

A. Megrabov

Institute of Computational Mathematics and Mathematical Geophysics; Novosibirsk State Technical University

Autor responsável pela correspondência
Email: mag@sscc.ru
Rússia, pr. Akademika Lavrentieva 6, Novosibirsk, 630090; pr. Karla Marksa 20, Novosibirsk, 630073

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018