🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Pseudo-Riemannian Foliations and Their Graphs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove that a foliation (M,F) of codimension q on a n-dimensional pseudo-Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We show that on the graph G = G(F) of a pseudo-Riemannian foliation there exists a unique pseudo-Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the fibers of different projections are orthogonal at common points. Relatively this metric the induced foliation (G, F) on the graph is pseudo-Riemannian and the structure of the leaves of (G, F) is described. Special attention is given to the structure of graphs of transversally (geodesically) complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.

Sobre autores

A. Dolgonosova

Department of Informatics, Mathematics and Computer Sciences

Autor responsável pela correspondência
Email: annadolgonosova@gmail.com
Rússia, ul. Myasnitskaya 20, Moscow, 101000

N. Zhukova

Department of Informatics, Mathematics and Computer Sciences

Email: annadolgonosova@gmail.com
Rússia, ul. Myasnitskaya 20, Moscow, 101000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018