🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Deformation quantization and the action of Poisson vector fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

As one knows, for every Poisson manifold M there exists a formal noncommutative deformation of the algebra of functions on it; it is determined in a unique way (up to an equivalence relation) by the given Poisson bivector. Let a Lie algebra g act by derivations on the functions on M. The main question, which we shall address in this paper is whether it is possible to lift this action to the derivations on the deformed algebra. It is easy to see, that when dimension of g is 1, the only necessary and sufficient condition for this is that the given action is by Poisson vector fields. However, when dimension of g is greater than 1, the previous methods do not work. In this paper we show how one can obtain a series of homological obstructions for this problem, which vanish if there exists the necessary extension.

Sobre autores

G. Sharygin

Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: sharygin@itep.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017