🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The Faster Methods for Computing Bessel Functions of the First Kind of an Integer Order with Application to Graphic Processors


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Algorithms for fast computations of the Bessel functions of an integer order with required accuracy are considered. The domain of functions is split into two intervals: 0 ≤ x ≤ 8 and x > 8. For the finite interval, expansion in the Chebyshev polynomials is applied. An optimal algorithm for computing functions J0(x) and J1(x) is presented. It is shown that the sufficient number of mathematical operations equals 15 for computing the function J0(x) and 16 for computing the function J1(x) in the interval x ≤ 8 with the approximation error O(10−6). Several algorithms for approximation of the functions Jn(x) at n > 1 are presented. The increase in speed of computations of the Bessel functions obtained through using our in-house methods in place of the Toolkit library is evaluated. Graphs showing the improvement of performance are presented.

Авторлар туралы

D. Tumakov

Institute of Computational Mathematics and Information Technologies

Хат алмасуға жауапты Автор.
Email: dtumakov@kpfu.ru
Ресей, Kazan, Tatarstan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019