🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Projections and Traces on von Neumann Algebras


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let P, Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) PQ + QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal; (iii) PQ is M*-paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra \(\mathcal{M}\) it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) φ(PQ + QP) ≤ 2φ((QPQ)p) for all projections P,Q\(\mathcal{M}\) and for some p = p(P, Q) ∈ (0,1]; (iii) φ(PQP) ≤ φ(P)1/pφ(Q)1/q for all projections P, Q\(\mathcal{M}\) and some positive numbers p = p(P, Q), q = q(P, Q) with 1/p+ 1/q = 1, p ≠ 2. Corollary: for a positive normal functional φ on \(\mathcal{M}\) the following conditions are equivalent: (i) φ is tracial; (ii) φ(A + A*) ≤ 2φ(∣A*∣) for all A\(\mathcal{M}\).

Авторлар туралы

A. Bikchentaev

N. I. Lobachevskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: Airat.Bikchentaev@kpfu.ru
Ресей, Kazan, Tatarstan, 420008

S. Abed

N. I. Lobachevskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: samialbarkish@gmail.com
Ресей, Kazan, Tatarstan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019